17.已知a,b,c是△ABC對邊,且a+b=$\sqrt{3}$csinA+ccosA,為BC的中點,且AD=2,求△ABC最大值.

分析 由正弦定理及三角函數(shù)恒等變換化簡已知等式可得sin(C-$\frac{π}{6}$)=$\frac{1}{2}$,又結(jié)合C∈(0,π),即可求得角C的值,由余弦定理結(jié)合已知可得$\frac{ab}{2}≤4$,又由三角形面積公式可得S△ABC=$\frac{1}{2}$ab•sinC=2$\sqrt{3}$.從而解得△ABC面積的最大值.

解答 解:由正弦定理可得:sinA+sinB=$\sqrt{3}$sinCsinA+sinCcosA,又A+B+C=π,
∴sinA+sin(A+C)=$\sqrt{3}$sinCsinA+sinCcosA…3分
整理可得:1+cosC=$\sqrt{3}$sinC,
即:$\sqrt{3}$sinC-cosC=1,
有:sin(C-$\frac{π}{6}$)=$\frac{1}{2}$,…6分
又C∈(0,π),
∴C-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
∴C-$\frac{π}{6}$=$\frac{π}{6}$,
∴C=$\frac{π}{3}$.…7分
由余弦定理可得:AD2=CA2+CD2+2CA•CD•cosC=CA2+CD2-CA•CD=b2+$\frac{{a}^{2}}{4}$-$\frac{ab}{2}$=ab$-\frac{ab}{2}$=$\frac{ab}{2}$,…10分
∴$\frac{ab}{2}≤4$,…11分
又S△ABC=$\frac{1}{2}$ab•sinC=$\frac{\sqrt{3}ab}{4}$.
∴△ABC面積的最大值是2$\sqrt{3}$.…12分

點評 本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC在,角A,B,C的對邊分別為a,b,c,已知cosC=$\frac{1}{3}$,sinA=$\sqrt{2}$cosB.
(1)求tanB的值;
(2)若c=$\sqrt{5}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.平面內(nèi)從點P(a,3)向C圓(x+2)2+(y+2)2=1作切線,則切線長的最小值是( 。
A.4B.2$\sqrt{6}$C.5D.$\frac{11}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若不等式組$\left\{\begin{array}{l}y≤2x\\ y≥0\\ 3x-y-6≤0.\end{array}\right.$表示的平面區(qū)域為M,不等式y(tǒng)≥x表示的平面區(qū)域為N.現(xiàn)隨機向區(qū)域M內(nèi)撒下一粒豆子,則豆子落在區(qū)域N內(nèi)的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點P是△ABC所在平面上一點,AB邊的中點為D,若2$\overrightarrow{PD}$=3$\overrightarrow{PA}$+$\overrightarrow{CB}$,則△ABC與△ABP的面積比為( 。
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={(x,y)|x2+y2=1},B={(x,y)|y=2x},則A∩B子集的個數(shù)是( 。
A.2B.3C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.現(xiàn)有五張連號的電影票分給甲、乙、丙三人,每人至少一張,其中有兩人各分得兩張連號的電影票,則不同的分法有18種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.一空間幾何體的三視圖如圖所示,則該幾何體所有棱長的取值集合為$\left\{{2,3,\sqrt{5}}\right\}$;
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.過點A(2,3),且垂直于向量$\overrightarrow{a}$=(2,1)的直線方程為( 。
A.2x+y-7=0B.2x+y+7=0C.x-2y+4=0D.x-2y-4=0

查看答案和解析>>

同步練習(xí)冊答案