分析 (1)由題意可得:2bn=an+an+1,$a_{n+1}^2={b_n}•{b_{n+1}}$,由bn>0,an>0,$⇒2{(\sqrt{b_n})^2}=\sqrt{{b_{n-1}}{b_n}}+\sqrt{{b_n}{b_{n+1}}}(n≥2)$,可得$2\sqrt{b_n}=\sqrt{{b_{n-1}}}+\sqrt{{b_{n+1}}}$,即可證明,進(jìn)而得出.
(2)利用“裂項(xiàng)求和”方法即可得出.
解答 (1)證明:由題意可得:2bn=an+an+1,$a_{n+1}^2={b_n}•{b_{n+1}}$,
∵a1=2,b1=4,∴a2=6,b2=9,
bn>0,an>0,an,bn,an+1成等差數(shù)列$⇒2{(\sqrt{b_n})^2}=\sqrt{{b_{n-1}}{b_n}}+\sqrt{{b_n}{b_{n+1}}}(n≥2)$,
∴$2\sqrt{b_n}=\sqrt{{b_{n-1}}}+\sqrt{{b_{n+1}}}$,
∴$\left\{{\sqrt{b_n}}\right\}$成等差數(shù)列,∴$\sqrt{b_n}=\sqrt{b_1}+(n-1)(\sqrt{b_2}-\sqrt{b_1})$$⇒{b_n}={(n+1)^2}$,
an=$\sqrt{{n}^{2}(n+1)^{2}}$=n(n+1).
(2)解:${c_n}=\frac{1}{{{{(n+1)}^2}-1}}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
${S_n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2})$=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})=\frac{3}{4}-\frac{2n+3}{2(n+1)(n+2)}$.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | -3 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,3) | B. | {2,3} | C. | {1,3} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
A戶型 | 0.7 | 1.3 | 1.1 | 1.4 | 1.1 | 0.9 | 0.8 | 0.8 | 1.3 | 0.9 |
B戶型 | 1.2 | 1.6 | 2.3 | 1.8 | 1.4 | 2.1 | 1.4 | 1.2 | 1.7 | 1.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com