分析 (1)由Sn+1=2Sn+n+1(n∈N*),變形為:Sn+1+(n+3)=2[Sn+(n+2)],利用等比數(shù)列的通項(xiàng)公式可得Sn,再利用遞推關(guān)系即可得出.
(2)利用“裂項(xiàng)求和”即可得出.
解答 解:(1)∵Sn+1=2Sn+n+1(n∈N*),
∴Sn+1+(n+3)=2[Sn+(n+2)],
∴數(shù)列{Sn+(n+2)}是等比數(shù)列,首項(xiàng)為4,公比為2,
∴Sn+n+2=4×2n-1=2n+1,
∴Sn=2n+1-n-2.
∴當(dāng)n≥2時(shí),an=Sn-Sn-1=2n+1-n-2-(2n-n-1)=2n-1.
當(dāng)n=1時(shí)式式也成立,
∴an=2n-1.
(2)bn=$\frac{{2}^{n}}{{a}_{n}•{a}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$,
∴數(shù)列{bn}的前n項(xiàng)和Tn=$(\frac{1}{2-1}-\frac{1}{{2}^{2}-1})$+$(\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1})$+…+$(\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1})$
=1-$\frac{1}{{2}^{n+1}-1}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最大值1,最小值-1 | B. | 最大值1,最小值-$\frac{1}{2}$ | ||
C. | 最大值2,最小值-2 | D. | 最大值2,最小值-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 60$\sqrt{3}$ | B. | 50$\sqrt{3}$ | C. | 60$\sqrt{6}$ | D. | 50$\sqrt{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com