5.若不等式組$\left\{\begin{array}{l}y≤2x\\ y≥0\\ 3x-y-6≤0.\end{array}\right.$表示的平面區(qū)域?yàn)镸,不等式y(tǒng)≥x表示的平面區(qū)域?yàn)镹.現(xiàn)隨機(jī)向區(qū)域M內(nèi)撒下一粒豆子,則豆子落在區(qū)域N內(nèi)的概率為$\frac{3}{4}$.

分析 畫出區(qū)域M,N表示的圖形,利用幾何概型公式,只要求出兩個(gè)區(qū)域的面積即可.

解答 解:由題意,區(qū)域M,N表示的圖形如圖
其中區(qū)域M是COE,區(qū)域N表示是區(qū)域OCD,由幾何概型公式可得豆子落在區(qū)域N內(nèi)的概率為:
$\frac{{S}_{△COD}}{{S}_{△OCE}}$=$\frac{{S}_{△OCE}-{S}_{△ODE}}{{S}_{△OCE}}=\frac{\frac{1}{2}×2×12-\frac{1}{2}×2×3}{\frac{1}{2}×2×12}$=$\frac{3}{4}$;
故答案為:$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查幾何概型,將基本事件“幾何化”,實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,將隨機(jī)事件的概率抽象為幾何概型是研究的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知復(fù)數(shù)z=i(3+4i)(i為虛數(shù)單位),則z的模為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=ex-mx+1的圖象為曲線C,若曲線C存在與直線y=ex垂直的切線,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,$\frac{1}{e}$)B.($\frac{1}{e}$,+∞)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在四棱柱ABCD-A1B1C1D1中,側(cè)棱DD1⊥底面ABCD,P為底面ABCD內(nèi)的一個(gè)動(dòng)點(diǎn),當(dāng)△D1PC的面積為定值b(b>0)時(shí),點(diǎn)P在底面ABCD上的運(yùn)動(dòng)軌跡為( 。
A.橢圓B.雙曲線C.拋物線D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知復(fù)數(shù)z滿足(4+3i)z=25(i是虛數(shù)單位),則z的虛部為( 。
A.-3B.3C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知曲線C的方程為$\frac{x^2}{4}+\frac{y^2}{5}$=1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐 標(biāo)系,直線l的極坐標(biāo)方程為$ρcos(θ-\frac{π}{4})=2\sqrt{2}$.
(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)已知M是曲線C上任意一點(diǎn),求點(diǎn)M到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a,b,c是△ABC對(duì)邊,且a+b=$\sqrt{3}$csinA+ccosA,為BC的中點(diǎn),且AD=2,求△ABC最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知四邊形ABCD是邊長(zhǎng)為$\sqrt{3}$的菱形,對(duì)角線AC=2$\sqrt{2}$.分別過點(diǎn)B,C,D向平面ABCD外作3條相互平行的直線BE、CF、DG,其中點(diǎn)E,F(xiàn)在平面ABCD同側(cè),CF=8,且平面AEF與直線DG相交于點(diǎn)G,GE∩AF=P,AC∩BD=O,連結(jié)OP.
(Ⅰ)證明:OP∥DG;
(Ⅱ)當(dāng)點(diǎn)F在平面ABCD內(nèi)的投影恰為O點(diǎn)時(shí),求四面體FACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且an+1=Sn+1(n∈N*),a1=1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成一個(gè)公差為dn的等差數(shù)列,求數(shù)列$\{\frac{1}{d_n}\}$的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案