15.如果某種彩票的中獎(jiǎng)概率為$\frac{1}{1000}$,那么下列選項(xiàng)正確的是( 。
A.買1000張彩票一定能中獎(jiǎng)
B.買999張這種彩票不可能中獎(jiǎng)
C.買1000張這種彩票可能沒有一張中獎(jiǎng)
D.買1張這種彩票一定不能中獎(jiǎng)

分析 根據(jù)事件的運(yùn)算及概率的性質(zhì)對(duì)四個(gè)說法進(jìn)行驗(yàn)證即可得出正確的說法的個(gè)數(shù),選出正確答案.

解答 解:如果某種彩票的中獎(jiǎng)概率為$\frac{1}{1000}$,
則買1000張這種彩票可能沒有一張中獎(jiǎng),
故選:C.

點(diǎn)評(píng) 本題考查概率的意義及事件的運(yùn)算,屬于基本概念題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在正方體ABCD-A1B1C1D1中,O為正方形A1B1C1D1的中心,則異面直線A1D與OB所成角的余弦值為(  
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.直線y=x+1與直線x=1的夾角大小為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)(x∈R)為奇函數(shù),f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),則f(3)=(  )
A.$\frac{1}{3}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.二手車經(jīng)銷商小王對(duì)其所經(jīng)營(yíng)的某一型號(hào)二手汽車的使用年數(shù)x(0<x≤10)與銷售價(jià)格y(單位:萬元/輛)進(jìn)行整理,得到如表的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù)246810
售價(jià)16139.574.5
(1)試求y關(guān)于x的回歸直線方程;(參考公式:$\hat b$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a$=y-$\hat b\overline x$)
(2)已知每輛該型號(hào)汽車的收購價(jià)格為w=0.01x3-0.09x2-1.45x+17.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測(cè)x為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤(rùn)L(x)最大?(利潤(rùn)=售價(jià)-收購價(jià))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=($\frac{1}{2}$+cosx)x在[-4,4]的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{bn}是等比數(shù)列,b9是1和3的等差數(shù)列中項(xiàng),則b2b16=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知樣本8,9,10,x,y的平均數(shù)為9,方差為2,則x2+y2=170.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知右焦點(diǎn)為F的橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)與直線y=$\frac{3}{\sqrt{7}}$相交于P,Q兩點(diǎn),且PF⊥QF.
(1)求橢圓M的方程:
(2)O為坐標(biāo)原點(diǎn),A,B,C是橢圓E上不同三點(diǎn),并且O為△ABC的重心,試探究△ABC的面積是否為定值,若是,求出這個(gè)定值;若不是.說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案