3.設(shè)函數(shù)f(x)(x∈R)為奇函數(shù),f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),則f(3)=( 。
A.$\frac{1}{3}$B.$\frac{3}{2}$C.1D.2

分析 由條件利用函數(shù)的奇偶性的性質(zhì)求得f(1)的值,再根據(jù)f(1)=f(-1+2)=-f(1)+f(2),求得f(2)的值,從而求得f(3)=f(1+2)=f(1)+f(2)的值.

解答 解:函數(shù)f(x)(x∈R)為奇函數(shù),f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),
∴f(0)=0,∴且 f(1)=f(-1+2)=f(-1)+f(2)=-f(1)+f(2),
∴f(2)=2f(1)=1,
則f(3)=f(1+2)=f(1)+f(2)=$\frac{1}{2}$+1=$\frac{3}{2}$,
故選:B.

點(diǎn)評 本題主要考查函數(shù)的奇偶性的性質(zhì),求函數(shù)的值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a,b,c是正整數(shù),且a∈[70,80),b∈[80,90),c∈[90,100],當(dāng)數(shù)據(jù)a,b,c的方差最小時(shí),a+b+c的值為( 。
A.252或253B.253或254C.254或255D.267或268

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.[示范高中]設(shè)不等式x2-2ax+a+2≤0的解集為M,集合N=[1,4],且M⊆N,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線l:Ax+By+C=0(A、B不全為零)與圓x2+y2=1交于M、N兩點(diǎn),且|MN|=$\sqrt{3}$,若O為坐標(biāo)原點(diǎn),則$\overrightarrow{OM}$•$\overrightarrow{ON}$的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.下列命題中正確的序號是①②③⑤
①已知隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤2)=0.9,則P(ξ>2)=0.05;
②某學(xué)生在最近的15次數(shù)學(xué)測驗(yàn)中有5次不及格.按照這個成績,他在接下來的6次測驗(yàn)中,恰好前4次及格的概率為($\frac{2}{3}$)4($\frac{1}{3}$)2;
③設(shè)a,b∈R,“a=0”是“復(fù)數(shù)a+bi是純虛數(shù)”的必要不充分條件;
④某個命題與正整數(shù)有關(guān),若當(dāng)n=k(k∈N*)時(shí)該命題成立,那么可推得當(dāng)n=k+1時(shí)該命題也成立,現(xiàn)已知當(dāng)n=5時(shí)該命題不成立,那么可推得當(dāng)n=6時(shí),該命題不成立;
⑤曲線y=x2-1與直線x=2,y=0所圍成的區(qū)域的面積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知α是第三象限角,化簡f(x)=$\frac{sin(α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}{tan(-α-π)sin(-π-α)}$=-cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如果某種彩票的中獎概率為$\frac{1}{1000}$,那么下列選項(xiàng)正確的是( 。
A.買1000張彩票一定能中獎
B.買999張這種彩票不可能中獎
C.買1000張這種彩票可能沒有一張中獎
D.買1張這種彩票一定不能中獎

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個圓錐的正(主)視圖及其尺寸如圖所示,則該圓錐的側(cè)面積是( 。
A.$\frac{15}{2}π$B.12πC.15πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ,θ∈[0,2π).
(1)求曲線C的直角坐標(biāo)方程;
(2)若點(diǎn)D在曲線C上,求它到直線l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$(t為參數(shù),t∈R)的最短距離.

查看答案和解析>>

同步練習(xí)冊答案