分析 先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=$\frac{x+2y+3}{x+1}$中的$\frac{y+1}{x+1}$表示過點(x,y)與(-1.-1)連線的斜率,只需求出可行域內(nèi)的點與(-1,-1)連線的斜率即可.
解答 解:∵z=$\frac{x+2y+3}{x+1}$=1+2×$\frac{y+1}{x+1}$,
而$\frac{y+1}{x+1}$表示過點(x,y)與(-1.-1)連線的斜率,
易知a>0,所以可作出可行域,
z=$\frac{x+2y+3}{x+1}$的最小值為$\frac{3}{2}$,
知$\frac{y+1}{x+1}$的最小值是$\frac{1}{4}$,
即($\frac{y+1}{x+1}$)min=$\frac{0+1}{3a+1}$=$\frac{1}{3a+1}$=$\frac{1}{4}$⇒a=1.
故答案為:1;
點評 本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值.涉及到線性規(guī)劃的題目,每年必考;就此題而言,式子z=$\frac{x+2y+3}{x+1}$的處理應當成為解決本題的關(guān)鍵,一般來說,高考題中的分式結(jié)構(gòu)在處理方式上一般是分離變形,這樣其幾何意義就表現(xiàn)來了.是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com