5.設(shè)f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),已知x2f′(x)+xf(x)=lnx,f(1)=$\frac{1}{2}$,則下列結(jié)論正確的是(  )
A.f(x)在(0,+∞)上有極大值$\frac{1}{2}$B.f(x)在(0,+∞)上有極小值$\frac{1}{2}$
C.f(x)在(0,+∞)單調(diào)遞增D.f(x)在(0,+∞)單調(diào)遞減

分析 由題意知[xf(x)]′=$\frac{lnx}{x}$,從而由積分可知xf(x)=$\frac{1}{2}$(lnx)2+c,從而解得f(x)=$\frac{l{n}^{2}x}{2x}$+$\frac{1}{2x}$,從而再求導(dǎo)判斷函數(shù)的單調(diào)性.

解答 解:∵x2f′(x)+xf(x)=lnx,
∴xf′(x)+f(x)=$\frac{lnx}{x}$,
∴[xf(x)]′=$\frac{lnx}{x}$,
∴xf(x)=$\frac{1}{2}$(lnx)2+c,
又∵f(1)=$\frac{1}{2}$,
∴1•f(1)=$\frac{1}{2}$(ln1)2+c,
即$\frac{1}{2}$=c,
故c=$\frac{1}{2}$,則xf(x)=$\frac{1}{2}$(lnx)2+$\frac{1}{2}$,
∴f(x)=$\frac{l{n}^{2}x}{2x}$+$\frac{1}{2x}$,
∴f′(x)=$\frac{2lnx•\frac{1}{x}•x-(l{n}^{2}x+1)}{2{x}^{2}}$=$\frac{-(lnx-1)^{2}}{2{x}^{2}}$≤0,
∴f(x)在區(qū)間(0,+∞)上是減函數(shù),
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的判斷,利用條件結(jié)合函數(shù)的積分公式求出函數(shù)的表達(dá)式數(shù),利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解決本題的關(guān)鍵.綜合性較強(qiáng),不太容易想到.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)圓C2:x2+y2=b2,在橢圓C1上存在點(diǎn)P,過(guò)點(diǎn)P作圓C2的兩條切線PA,PB,切點(diǎn)分別為A,B,若$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為$\frac{2π}{3}$,則橢圓的離心率的取值范圍是(  )
A.[$\frac{\sqrt{3}}{2}$,1)B.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$]C.[$\frac{\sqrt{2}}{2}$,1)D.[$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若a>0,b>0,且ln(a+b)=0,則$\frac{2}{a}$+$\frac{3}$的最小值是5+2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.平面直角坐標(biāo)系xOy中,已知F1、F2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),且右焦點(diǎn)F2的坐標(biāo)為($\sqrt{3}$,0),點(diǎn)($\sqrt{3}$,$\frac{1}{2}$)在橢圓C上.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)在橢圓C上任取一點(diǎn)P,點(diǎn)Q在PO的延長(zhǎng)線上,且$\frac{|OQ|}{|OP|}$=2.
(1)當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),求點(diǎn)Q形成的軌跡E的方程;
(2)若過(guò)點(diǎn)P的直線l:y=x+m交(1)中的曲線E于A,B兩點(diǎn),求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在平行六面體ABCD-A1B1C1D1中,化簡(jiǎn)$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{A{A}_{1}}$=( 。
A.$\overrightarrow{A{C}_{1}}$B.$\overrightarrow{C{A}_{1}}$C.$\overrightarrow{B{C}_{1}}$D.$\overrightarrow{C{B}_{1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某中學(xué)從甲、乙兩個(gè)藝術(shù)班中各選出7名同學(xué)參加才藝比賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖所示,其中甲班同學(xué)成績(jī)的眾數(shù)是80,乙班同學(xué)成績(jī)的中位數(shù)是88,則x+y的值為( 。
A.11B.9C.8D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知a,b,c為直角三角形中的三邊長(zhǎng),c為斜邊長(zhǎng),若點(diǎn)M(m,n)在直線l:ax+by+2c=0上,則m2+n2的最小值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知拋物線y2=4$\sqrt{3}$x的準(zhǔn)線與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1兩條漸近線分別交于A,B兩點(diǎn),且|AB|=2,則雙曲線的離心率e為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)$f(x)=\frac{|x|-a}(a>0,b>0)$的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.下列命題:
①“囧函數(shù)”的值域?yàn)镽;
②“囧函數(shù)”在(0,+∞)上單調(diào)遞增;
③“囧函數(shù)”的圖象關(guān)于y軸對(duì)稱;
④“囧函數(shù)”有兩個(gè)零點(diǎn);
⑤“囧函數(shù)”的圖象與直線y=kx+m(k≠0)至少有一個(gè)交點(diǎn).
正確命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案