14.已知拋物線y2=4$\sqrt{3}$x的準線與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1兩條漸近線分別交于A,B兩點,且|AB|=2,則雙曲線的離心率e為$\frac{2\sqrt{3}}{3}$.

分析 由已知條件,分別求出拋物線的準線方程和雙曲線的漸近線,由|AB|=2,求出b=$\frac{\sqrt{3}}{3}$a,由此能求出雙曲線的離心率.

解答 解:y2=4$\sqrt{3}$x的準線方程為l:x=-$\sqrt{3}$,
雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的兩條漸近線分別為:y=±$\frac{a}$x,
∵拋物線y2=4$\sqrt{3}$x的準線與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1兩條漸近線分別交于A,B兩點,且|AB|=2,
∴$\frac{2\sqrt{3}b}{a}$=2
即b=$\frac{\sqrt{3}}{3}$a,
∴c=$\frac{2\sqrt{3}}{3}$a,
∴e=$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$.
故答案為:$\frac{2\sqrt{3}}{3}$.

點評 本題考查雙曲線的離心率的求法,是中檔題,解題時要熟練掌握拋物線、雙曲線的簡單性質.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.某校的一個社會實踐調查小組,在對該校學生的良好“用眼習慣”的調查中,隨機發(fā)放了120分問卷.對收回的100份有效問卷進行統(tǒng)計,得到如2×2下列聯(lián)表:
做不到科學用眼能做到科學用眼合計
451055
301545
合計7525100
(1)現(xiàn)按女生是否能做到科學用眼進行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機抽取3份,并記其中能做到科學用眼的問卷的份數(shù)X,試求隨機變量X的分布列和數(shù)學期望;
(2)若在犯錯誤的概率不超過P的前提下認為良好“用眼習慣”與性別有關,那么根據(jù)臨界值表,最精確的P的值應為多少?請說明理由.
附:獨立性檢驗統(tǒng)計量${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
獨立性檢驗臨界值表:
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設f′(x)為函數(shù)f(x)的導函數(shù),已知x2f′(x)+xf(x)=lnx,f(1)=$\frac{1}{2}$,則下列結論正確的是( 。
A.f(x)在(0,+∞)上有極大值$\frac{1}{2}$B.f(x)在(0,+∞)上有極小值$\frac{1}{2}$
C.f(x)在(0,+∞)單調遞增D.f(x)在(0,+∞)單調遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知F1,F(xiàn)2為橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點,F(xiàn)2在以$Q(\sqrt{2},1)$為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)過點P(0,1)的直線l1交橢圓C1于A,B兩點,過P與l1垂直的直線l2交圓C2于C,D兩點,M為線段CD中點,求△MAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=2acos2x+2$\sqrt{3}$bsinxcosx,且f(0)=2,f($\frac{π}{4}$)=$\sqrt{3}$+1.
(1)求f(x)的最大值及單調遞減區(qū)間;
(2)若α≠β,α,β∈(0,π),且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設函數(shù)f(x)是定義在R上的奇函數(shù),當x∈(0,1]時f(x)=1+log2x.若對任意的x∈R都有f(x)=f(x+4),則f(2014)+f(2016)-2f(2015)=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.對于直線m,n和平面α,β,能得出α⊥β的一個條件是( 。
A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n?αC.m∥n,n⊥β,m?αD.m∥n,m⊥α,n⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.不等式$\frac{x+1}{x-3}$≥0的解集是{x|x>3或x≤-1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.三棱錐S-ABC及其三視圖中的正視圖和側視圖如圖所示,則棱SB的長為(  )
A.$16\sqrt{3}$B.$\sqrt{38}$C.$4\sqrt{2}$D.$2\sqrt{11}$

查看答案和解析>>

同步練習冊答案