分析 由點P(cosθ,sinθ)在直線y=2x上,將P坐標代入直線方程,利用同角三角函數(shù)間的基本關系求出tanθ的值,將所求式子利用同角三角函數(shù)間的基本關系化簡后,把tanθ的值代入即可求出值.
解答 解:∵點P(cosθ,sinθ)在直線y=2x上,
∴tanθ=2,
∴sin2θ+cos2θ=2sinθcosθ+cos2θ-sin2θ
=$\frac{2sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$+$\frac{co{s}^{2}θ-si{n}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ}{ta{n}^{2}θ+1}$+$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$
=$\frac{4}{5}+\frac{1-4}{1+4}$=$\frac{1}{5}$.
故答案為:$\frac{1}{5}$.
點評 此題考查了同角三角函數(shù)間的基本關系,熟練掌握基本關系是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow a$+$\overrightarrow b$ | B. | $\frac{1}{2}$($\overrightarrow a$+$\overrightarrow b$) | C. | $\overrightarrow a$-$\overrightarrow b$ | D. | $\frac{1}{2}$($\overrightarrow a$-$\overrightarrow b$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 必要充分條件 | D. | 非充分非必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com