3.設(shè)?>0,x≤t≤y,|x-a|<?,|y-a|<?,求證:|t-a|<?.

分析 由條件證得a-?<t<a+?,即-?<t-a<?,從而證得結(jié)論.

解答 證明:由|x-a|<?,|y-a|<?,可得-?<x-a<?,-?<y-a<?,
即 a-?<x<a+?,a-?<y<a+?.
再根據(jù)x≤t≤y,可得a-?<t<a+?,即-?<x-a<?,∴|t-a|<?.

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的性質(zhì)應(yīng)用,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)標(biāo)準(zhǔn)煤的幾組對(duì)應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=0.7x+0.35,那么表中m的值為( 。
x3456
y2.5m44.5
A.4B.3.5C.4.5D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{a}{3}$x3+x2-2ax-1,f′(-1)=0,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=$\sqrt{{x}^{2}-6x+13}$+$\sqrt{{x}^{2}+4x+5}$的最小值為$\sqrt{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在正項(xiàng)等比數(shù)列{an}中a3+a4=$\frac{3}{8}$,a6=1,則滿足a1+a2+…+an>a1a2…an的最大正整數(shù)n的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在等比數(shù)列{an}中,若a3=2,a5=16,則a4=( 。
A.±4$\sqrt{2}$B.-4$\sqrt{2}$C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow{AB}$=(1,x-2),$\overrightarrow{CD}$=(2,-6y)(x,y∈R+),且$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則$\frac{3}{x}+\frac{1}{y}$的最小值等于( 。
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-2|-|x-5|.
(1)求f(x)的值域; 
(2)求不等式:f(x)≥x2-3x-1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.曲線y=x2-1與直線x=2,y=0所圍成的區(qū)域的面積為$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案