13.將單位正方體放置在水平桌面上(一面與桌面完全接觸),沿其一條棱翻動(dòng)一次后,使得正方體的另一面與桌面完全接觸,稱一次翻轉(zhuǎn).如圖,正方體的頂點(diǎn) A,經(jīng)任意翻轉(zhuǎn)三次后,點(diǎn) A與其終結(jié)位置的直線距離不可能為( 。
A.0B.1C.2D.4

分析 運(yùn)用排除法,考慮選項(xiàng)A,C,D成立的情況,即可判斷B不可能.

解答 解:第一次往前翻,第二次往左翻,第三次往后翻,點(diǎn)A始終在原來位置,
所以點(diǎn)A與終結(jié)位置的距離為0.如圖1,A可能;
第一次往后翻,第二次往右翻,第三次往前翻,
點(diǎn)A與終結(jié)位置距離是2,如圖2,C可能;
第一次往右翻,第二次再往右翻,第三次再往右翻,
點(diǎn)A與終結(jié)位置距離是4,如圖3,D可能.
由排除法,可知B不可能.
故選:B.

點(diǎn)評 本題考查正方體的兩點(diǎn)的距離,主要考查幾何體的旋轉(zhuǎn),以及簡單的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,P是橢圓上異于頂點(diǎn)的動(dòng)點(diǎn),若恰好有4個(gè)不同的點(diǎn)P,使得△PF1F2為等腰三角形,且有一個(gè)角為鈍角,則橢圓的離心率的取值范圍是($\frac{1}{3}$,$\sqrt{2}-1$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,A是橢圓C的一
個(gè)頂點(diǎn),B是直線AF1與橢圓C的另一個(gè)交點(diǎn),∠F1AB=90°,△F1AB的面積為$\frac{4}{3}$
(1)求橢圓C的方程
(2)設(shè)P是橢圓C上的一個(gè)動(dòng)點(diǎn),點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)為Q,求$\overrightarrow{BP}$•$\overrightarrow{BQ}$的取值
圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長是短軸長的$\sqrt{3}$倍,且經(jīng)過點(diǎn)($\sqrt{3}$,1).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線l1,與橢圓相交于A、B兩點(diǎn),過AB的中點(diǎn)N作直線l2與y軸交于點(diǎn)P,D為N在直線l上的射影,若|AB|2=4|ND|•|MP|,求直線l2的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足an≠0,a1=$\frac{1}{3}$,an-1-an=2an•an-1(n≥2,n∈N*).
(1)求證:$({\frac{1}{a_n}})$是等差數(shù)列;
(2)設(shè)bn=an•an+1,{bn}的前n項(xiàng)和為Sn,求證:Sn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.橢圓$\frac{{x}^{2}}{3}$+y2=1的一個(gè)焦點(diǎn)坐標(biāo)為(  )
A.($\sqrt{2}$,0)B.(0,$\sqrt{2}$)C.(2,0)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,A,B,C是橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的三點(diǎn),其中點(diǎn)A是橢圓的右頂點(diǎn),BC過橢圓M的中心,且滿足AC⊥BC,BC=2AC.
(1)求橢圓的離心率;
(2)若y軸被△ABC的外接圓所截得弦長為9,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=an+$\frac{1}{n^2}$an2
(Ⅰ)求a2,a3的值;
(Ⅱ)證明:an<n(n∈N*);
(Ⅲ)當(dāng)n≥3(n∈N*)時(shí),證明:an>$\frac{6n}{5n+6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一機(jī)器元件的三視圖及尺寸如圖所示(單位:dm),則該組合體的體積為( 。
A.80 dm3B.88 dm3C.96 dm3D.120 dm3

查看答案和解析>>

同步練習(xí)冊答案