15.設F為拋物線y2=4x的焦點,A,B,C為該拋物線上不同的三點,$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,O為坐標原點,且△OFA、△OFB、△OFC的面積分別為S1、S2、S3,則S12+S22+S32=( 。
A.2B.3C.6D.9

分析 確定拋物線y2=4x的焦點F的坐標,求出S12+S22+S32,利用點F是△ABC的重心,即可求得結論.

解答 解:設A、B、C三點的坐標分別為(x1,y1),(x2,y2),(x3,y3),則
∵拋物線y2=4x的焦點F的坐標為(1,0)
∴S1=$\frac{1}{2}$|y1|,S2=$\frac{1}{2}$|y2|,S3=$\frac{1}{2}$|y3|,
∴S12+S22+S32=$\frac{1}{4}$(y12+y22+y32)=x1+x2+x3
∵$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,∴點F是△ABC的重心
∴x1+x2+x3=3
∴S12+S22+S32=3
故選:B.

點評 本題考查拋物線的定義,考查三角形重心的性質,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.經(jīng)過點A(1,0)的動直線交拋物線y2=8x于M、N兩點,求動弦MN中點的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知:cos(α+$\frac{π}{4}}$)=$\frac{3}{5}$,$\frac{π}{2}$<α<$\frac{3π}{2}$,求cos(2α+$\frac{π}{4}}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.兩個相同的正四棱錐底面重合組成一個八面體,可放于棱長為1的正方體中,重合的底面與正方體的某一個圖平行,各頂點均在正方體的表面上(如圖),該八面體的體積可能值有(  )
A.1個B.2個C.3個D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=x2-2|x-a|
(1)若函數(shù)y=f(x)為偶函數(shù),求a的值;
(2)若a=$\frac{1}{2}$,求函數(shù)y=f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知點C(x0,y0)是拋物線y2=4x上的動點,以C為圓心的圓過該拋物線的焦點F,且圓C與直線x=-$\frac{1}{2}$相交于A,B兩點.
(Ⅰ)當|FC|=3時,求|AB|;
(Ⅱ)求|FA|•|FB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設函數(shù)f(x)的定義域為R,且為奇函數(shù),當x>0時,f(x)=-x2+2x.若f(x)在區(qū)間[-1,a-2]上是單調遞增函數(shù),則a的取值范圍是1<a≤3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在平面直角坐標系xOy中,過y軸正方向上一點C(0,c)任作一直線,與拋物線y=x2相交于A,B兩點,一條垂直于x軸的直線分別與線段AB和直線l:y=-c交于點P,Q.
(1)若$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,求c的值;
(2)若P為線段AB的中點,求證:直線QA與該拋物線有且僅有一個公共點.
(3)若直線QA的斜率存在,且與該拋物線有且僅有一個公共點,試問P是否一定為線段AB的中點?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.m為何實數(shù)時,復數(shù)z=(2+i)m2-3(i+1)m-2(1-i)是:
(1)虛數(shù);
(2)若z<0,求m;
(3)z所對應的點在第三象限.

查看答案和解析>>

同步練習冊答案