【題目】如圖所示,在四棱臺ABCDA1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,ABAA1=2A1B1=2.

(1)若MCD中點,求證:AM⊥平面AA1B1B;

(2)求直線DD1與平面A1BD所成角的正弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)推導(dǎo)出AM⊥CD,CDAB得,AM⊥AB,AM⊥AA1,由此能證明AM平面AA1B1B

(2)分別以AB,AM,AA1為x軸、y軸、z軸,建立如圖所示的空間直角坐標系A(chǔ)﹣xyz,利用向量法能求出直線DD1與平面A1BD所成角θ的正弦值.

試題解析:

(1)證明:連接AC,

四邊形ABCD為菱形,

BAD=120°,

∴△ACD為等邊三角形,

MCD中點,

AMCD,由CDAB得,

AMAB.

AA1底面ABCDAM平面ABCD,∴AMAA1.

ABAA1A,

AM平面AA1B1B.

(2)∵四邊形ABCD為菱形,BAD=120°,ABAA1=2A1B1=2,

DM=1,AM,

∴∠AMD=∠BAM=90°,

AA1底面ABCD,

A為坐標原點,AB,AMAA1所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系Axyz,

A1(0,0,2),B(2,0,0),D(-1,,0),D1,

=(-3,,0),=(2,0,-2).

設(shè)平面A1BD的法向量為n=(x,yz),

x=1,則n=(1,,1),

∴|cos〈n,〉|=.

∴/span>直線DD1與平面A1BD所成角的正弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】上周某校高三年級學生參加了數(shù)學測試,年級組織任課教師對這次考試進行成績分析現(xiàn)從中隨機選取了40名學生的成績作為樣本,已知這40名學生的成績?nèi)吭?/span>40分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

1)估計這次月考數(shù)學成績的平均分和眾數(shù);

2)從成績大于等于80分的學生中隨機選2名,求至少有1名學生的成績在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】冰桶挑戰(zhàn)賽是一項社交網(wǎng)絡(luò)上發(fā)起的慈善公益活動,活動規(guī)定:被邀請者要么在小時內(nèi)接受挑戰(zhàn),要么選擇為慈善機構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請另外個人參與這項活動假設(shè)每個人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響

(1)若某參與者接受挑戰(zhàn)后,對其他個人發(fā)出邀請,則這個人中至少有個人接受挑戰(zhàn)的概率是多少?

(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關(guān),某調(diào)查機構(gòu)進行了隨機抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:

根據(jù)表中數(shù)據(jù),能否有%的把握認為冰桶挑戰(zhàn)賽與受邀者的性別有關(guān)?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,點(an,an+1)在直線yx+2上,且首項a1=1.

(1)求數(shù)列{an}的通項公式;

(2)數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}中,b1a1,b2a2,數(shù)列{bn}的前n項和為Tn,請寫出適合條件TnSn的所有n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線.

1)求直線和直線交點P的坐標;

2)若直線l經(jīng)過點P且在兩坐標軸上的截距互為相反數(shù),求直線l的一般式方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在各棱長均為2的三棱柱中,側(cè)面底面ABC,

1)求側(cè)棱與平面所成角的正弦值的大;

2)已知點D滿足,在直線上是否存在點P,使DP∥平面?若存在,請確定點P的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在區(qū)間內(nèi)恰有2019個零點,則________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,ABCDCD=2AB,EPC的中點,且∠PAB=PDC=90°

(Ⅰ)證明:BE∥平面PAD;

(Ⅱ)證明:平面PAB⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖的折線圖為某小區(qū)小型超市今年一月份到五月份的營業(yè)額和支出數(shù)據(jù)(利潤=營業(yè)額-支出),根據(jù)折線圖,下列說法中正確的是(

A.該超市這五個月中,利潤隨營業(yè)額的增長在增長

B.該超市這五個月中,利潤基本保持不變

C.該超市這五個月中,三月份的利潤最高

D.該超市這五個月中的營業(yè)額和支出呈正相關(guān)

查看答案和解析>>

同步練習冊答案