Processing math: 75%
15.已知實(shí)數(shù)x.y滿足x2+y2-2x+23y=0,若總有x+3y+m≥0,則實(shí)數(shù)m的最小值為6.

分析 設(shè)直線x+3y=t,圓心到直線的距離d=|13t|2≤2,求出t的范圍,總有x+3y+m≥0即,m≥-t,即可得到m的最小值.

解答 解:∵x2+y2-2x+23y=0,
∴(x-1)2+(y+32=4,
設(shè)直線x+3y=t,
∴圓心到直線的距離d=|13t|2≤2,
解得-6≤t≤2,
∵x+3y+m≥0,
∴x+3y≥-m,
∴t≥-m,
即m≥-t,
∵-2≤-t≤6,
故實(shí)數(shù)m的最小值為6,
故答案為:6.

點(diǎn)評 本題考查直線與圓的位置關(guān)系,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n(n∈N+)項(xiàng)和Sn=n2+2n
(1)求an;
(2)設(shè)bn=1Sn,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)函數(shù)f(x)=x2-(3a-1)x+a2在[1,+∞)是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)函數(shù)f(x)=x2-(3a-1)x+a2在[1,5]上是減函數(shù),求f(2)的取值范圍;
(3)函數(shù)f(x)=x2-(5a-2)x-4在[2,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求不等式(2x-1)(x+2)≥3x-1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若非零向量a為共線向量,如何畫出3a+?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.對下圖中各組向量a、,求作a+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.y=-2sin(3x-\frac{π}{3})的振幅為2,周期為\frac{2π}{3},初相φ=\frac{2π}{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若14400所有正因數(shù)從小到大構(gòu)成的數(shù)列d1,d2,…,dn,則Sn=\frac{1}{24e3sz1_{1}}+\frac{1}{xvxulo0_{2}}+…+\frac{1}{qtghkcz_{n}}=\frac{51181}{14400}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若f(x)=x2+2x-3,則f(x)在區(qū)間[-2,1]上的值域是(  )
A.[-4,-3]B.[-3,0]C.[-4,0]D.[0,2]

查看答案和解析>>

同步練習(xí)冊答案