4.若14400所有正因數(shù)從小到大構(gòu)成的數(shù)列d1,d2,…,dn,則Sn=$\frac{1}{w3ltqm2_{1}}$+$\frac{1}{s16v06y_{2}}$+…+$\frac{1}{omegnzh_{n}}$=$\frac{51181}{14400}$.

分析 由于14400=26•32•52,即有正因數(shù)的個數(shù)為7×3×3=63,分別寫出所有的正因數(shù),再由因式分解和等比數(shù)列的求和公式,即可得到所求和.

解答 解:由于14400=26•32•52,
即有正因數(shù)的個數(shù)為7×3×3=63,
則S63=(1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{64}$)+($\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{9}$+$\frac{1}{25}$+$\frac{1}{15}$+$\frac{1}{45}$+$\frac{1}{75}$+$\frac{1}{225}$)
+$\frac{1}{2}$($\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{9}$+$\frac{1}{25}$+$\frac{1}{15}$+$\frac{1}{45}$+$\frac{1}{75}$+$\frac{1}{225}$)+$\frac{1}{4}$($\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{9}$+$\frac{1}{25}$+$\frac{1}{15}$+$\frac{1}{45}$+$\frac{1}{75}$+$\frac{1}{225}$)
+…+$\frac{1}{64}$($\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{9}$+$\frac{1}{25}$+$\frac{1}{15}$+$\frac{1}{45}$+$\frac{1}{75}$+$\frac{1}{225}$)
=(1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{64}$)(1+$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{9}$+$\frac{1}{15}$+$\frac{1}{25}$+$\frac{1}{45}$+$\frac{1}{75}$+$\frac{1}{225}$)
=$\frac{1-\frac{1}{{2}^{7}}}{1-\frac{1}{2}}$•$\frac{403}{225}$=$\frac{51181}{14400}$.
故答案為:$\frac{51181}{14400}$.

點評 本題考查自然數(shù)的正因數(shù)的求法,以及等比數(shù)列的求和公式,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡:
(1)(2${a}^{\frac{2}{3}}$$^{\frac{1}{2}}$)•(-6${a}^{\frac{1}{2}}$$^{\frac{1}{3}}$)÷(-3${a}^{\frac{1}{6}}$$^{\frac{5}{6}}$)
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{a}}$)×$\root{3}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知實數(shù)x.y滿足x2+y2-2x+2$\sqrt{3}$y=0,若總有x+$\sqrt{3}$y+m≥0,則實數(shù)m的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=x2+bx+4恰有一個零點,則b=( 。
A.4B.16C.-4D.±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x2-ax-4(a∈R)的兩個零點為x1,x2,設(shè)x1<x2
(1)當(dāng)a>0時,證明:-2<x1<0;
(2)若函數(shù)g(x)=x2-|f(x)|在區(qū)間(-∞,-2)和(2,+∞)上均單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知sin($\frac{π}{4}$+α)sin($\frac{π}{4}$-α)=$\frac{1}{6}$,α∈($\frac{π}{2}$,π),求sin4α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=$\frac{1}{cosx\sqrt{1+ta{n}^{2}x}}$+$\frac{2tanx}{\sqrt{\frac{1}{co{s}^{2}x}-1}}$值域中元素的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,ABCD-A1B1C1D1是正方體,E,F(xiàn),G,H,M,N分別是所在棱的中點,則下列結(jié)論錯誤的有①③④
①GH和MN是平行直線;GH和EF是相交直線
②GH和MN是平行直線;MN和EF是相交直線
③GH和MN是相交直線;GH和EF是異面直線
④GH和EF是異面直線;MN和EF也是異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=m(0<m<A)的三個相鄰交點的橫坐標(biāo)分別為3,5,11,則f(x)的單調(diào)遞減區(qū)間是( 。
A.[8k,8k+4],k∈ZB.[8kπ,8kπ+4],k∈ZC.[8k-4,8k],k∈ZD.[8kπ-4,8kπ],k∈Z

查看答案和解析>>

同步練習(xí)冊答案