4.已知(1+ax)6=a0+a1x+a2x2+…+a6x6,若a2=${∫}_{0}^{3}$(x2+2)dx,則實(shí)數(shù)a的值為(  )
A.1B.2C.±1D.±2

分析 根據(jù)定積分的計(jì)算和二項(xiàng)式展開式的通項(xiàng)公式分別求出a2,即可求出a的值.

解答 解:∵a2=${∫}_{0}^{3}$(x2+2)dx=($\frac{1}{3}{x}^{3}+2x$)|${\;}_{0}^{3}$=9+6=15,且a2=C62a2=15a2,
∴15a2=15,
∴a=±1,
故選:C.

點(diǎn)評 本題主要考查定積分的計(jì)算和二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是( 。
A.若α∥β,m?α,n?β,則m∥nB.若α∥β,m∥α,n∥β,則m∥n
C.若m⊥α,n⊥β,m⊥n,則α∥βD.若m∥α,m?β,α∩β=n,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知z為虛數(shù),且有|z|=$\sqrt{5}$,如果z2+2$\overline{z}$為實(shí)數(shù).
(1)求:復(fù)數(shù)z;
(2)若z恰為實(shí)系數(shù)一元二次方程ax2+bx+c=0的根,試求出此方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.求函數(shù)$y=\sqrt{x-5}+\sqrt{7-x}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)z滿足(1+2i)•$\overline{z}$=|1-2i|2,其中$\overline{z}$是z的共軛復(fù)數(shù),則z的虛部為( 。
A.$\frac{-2\sqrt{5}}{5}$B.-2C.$\frac{2\sqrt{5}}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若存在x∈(2,+∞)使不等式2x-m<log2x成立,則實(shí)數(shù)m的取值范圍為(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),A為橢圓E的右頂點(diǎn),B,C分別為橢圓E的上、下頂點(diǎn).
(I)若N為AC的中點(diǎn),△BAN的面積為$\sqrt{2}$,橢圓的離心率為$\frac{\sqrt{2}}{2}$.求橢圓E的方程;
(Ⅱ)F為橢圓E的右焦點(diǎn),線段CF的延長線與線段AB交于點(diǎn)M,與橢圓E交于點(diǎn)P,求$\frac{|CM|}{|CP|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖是一個程序框圖,它的功能是( 。
A.輸出年份y∈[2000,2500)且y∈N“哪年是閏年”“哪年不是閏年”
B.輸出年份y∈[2000,2500]且y∈N“哪年是閏年”“哪年不是閏年”
C.輸出年份y∈[2000,2500)且y∈N“多少年是閏年”“多少年不是閏年”
D.輸出年份y∈[2000,2500]且y∈N“多少年是閏年”“多少年不是閏年”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=x3-ax2-bx+a2在x=1處有極值10,則a+b=7.

查看答案和解析>>

同步練習(xí)冊答案