7.某班一次數(shù)學(xué)測試成績的莖葉圖(莖上數(shù)代表十位,葉上數(shù)代表個位)如圖1所示.
(1)以10為組距,在圖2給定的坐標(biāo)系中畫出該班成績的頻率分布直方圖;
(2)用分層抽樣的方法抽取一個容量為8的樣本,在樣本中從分?jǐn)?shù)在[60,80)之間的試卷中任取3份分析學(xué)生失分情況,設(shè)抽取的試卷分?jǐn)?shù)在[70,80)的分?jǐn)?shù)為X,求X的分布列和數(shù)學(xué)期望.

分析 (1)由莖葉圖,作出頻率分布表,由頻率分布表作出頻率分布直方圖.
(2)由莖葉圖知分?jǐn)?shù)在[60,70)的有8人,分?jǐn)?shù)在[70,80)的有12人,全班人數(shù)為32人,用分層抽樣的方法抽取一個容量為8的樣本,應(yīng)該在分?jǐn)?shù)為[60,70)的試卷中抽取2份,在分?jǐn)?shù)為[70,80)的試卷中抽取3份,則X的可能取值為1,2,3,分別求出相應(yīng)的概率,由此能示出X的分布列和E(X).

解答 解:(1)由莖葉圖,作出頻率分布表:

 分組[50,60)[60,70)[70,80)[80,90)[90,100]
 頻數(shù) 4 8 12 4 4
 頻率 $\frac{1}{8}$ $\frac{2}{8}$ $\frac{3}{8}$ $\frac{1}{8}$ $\frac{1}{8}$
由頻率分布表作出頻率分布直方圖:

(2)由莖葉圖知分?jǐn)?shù)在[60,70)的有8人,
分?jǐn)?shù)在[70,80)的有12人,全班人數(shù)為32人,
用分層抽樣的方法抽取一個容量為8的樣本,
應(yīng)該在分?jǐn)?shù)為[60,70)的試卷中抽取$\frac{8}{32}×8=2$份,
在分?jǐn)?shù)為[70,80)的試卷中抽取$\frac{8}{32}×12=3份$,
則X的可能取值為1,2,3,
P(X=1)=$\frac{{C}_{3}^{1}{C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$,
P(X=2)=$\frac{{C}_{3}^{2}{C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{3}{5}$,
P(X=3)=$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=$\frac{1}{10}$,
∴X的分布列為:
 X 1 2 3
 P $\frac{3}{10}$ $\frac{3}{5}$ $\frac{1}{10}$
E(X)=$1×\frac{3}{10}+2×\frac{3}{5}+3×\frac{1}{10}$=1.8.

點評 本題考查概率的求法,考查離散型隨機(jī)的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認(rèn)真審題,注意排列組合知識的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某集團(tuán)公司為了獲得更大的收益,決定以后每年投入一筆資金用于廣告促銷.經(jīng)過市場調(diào)查,每年投入廣告費(fèi)t百萬元,可增加銷售額約(2t+$\frac{5}{t+2}$-$\frac{5}{2}$)百萬元(t≥0).
(1)若公司當(dāng)年新增收益不少于1.5百萬元,求每年投放廣告費(fèi)至少多少百萬元?
(2)現(xiàn)公司準(zhǔn)備投入6百萬元分別用于當(dāng)年廣告費(fèi)和新產(chǎn)品開發(fā),經(jīng)預(yù)測,每投入新產(chǎn)品開發(fā)費(fèi)x百萬元,可增加銷售額約($\frac{21}{x-8}$+3x+$\frac{21}{8}$)百萬元,問如何分配這筆資金,使該公司獲得新增收益最大?(新增收益=新增銷售額-投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知全集M={1,m,3+(m2-5m-6)i},集合N={x|x2-2x-3=0},若M∩N={3},求M∪N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.?dāng)S兩顆骰子,出現(xiàn)點數(shù)之和等于8的概率等于$\frac{5}{36}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知m∈R,i為虛數(shù)單位,且(m+2i)2=-3+4i.
(1)求實數(shù)m的值;
(2)若|z-1|=|m+2i|,求復(fù)數(shù)z在復(fù)平面上所對應(yīng)的點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若向量$\overrightarrow{a}$=(4,3),$\overrightarrow$=(-1,-2),則$\overrightarrow$在$\overrightarrow{a}$方向上的投影為( 。
A.-2B.2C.-2$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(-3)=0,當(dāng)x>0時,有f(x)-xf′(x)>0成立,則不等式f(x)>0的解集是( 。
A.(-∞,-3)∪(0,3)B.(-∞,-3)∪(3,+∞)C.(-3,0)∪(0,3)D.(-3,0)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義f″(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的圖象的“拐點”,可以證明,任何三次函數(shù)的圖象都有“拐點”,任何三次函數(shù)的圖象都有對稱中心,且“拐點”就是對稱中心.請你根據(jù)這一結(jié)論判斷下列命題:
①任意三次函數(shù)都關(guān)于點(-$\frac{3a}$,f(-$\frac{3a}$))對稱;
②存在三次函數(shù)y=f(x),f(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的圖象的對稱中心;
③存在三次函數(shù)的圖象不止一個對稱中心;
④若函數(shù)g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2-$\frac{5}{12}$,則g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=-1008
其中正確命題的序號為①②④(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,該零件由一個底面半徑為3cm,高為6cm的圓柱體毛坯切削得到,現(xiàn)用油漆對該型號零件表面進(jìn)項防銹處理,若100平方厘米的零件表面約需用油漆10克,那么對100個該型號零件表面進(jìn)行防銹處理約需油漆( 。é腥3.14)
A.1.13千克B.1.45千克C.1.57千克D.1.97千克

查看答案和解析>>

同步練習(xí)冊答案