4.在直角坐標(biāo)系x Oy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=1+2cosφ\(chéng)\ y=2sinφ\(chéng)end{array}\right.$(φ為參數(shù)).以 O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,則圓C的極坐標(biāo)方程是ρ2=2ρcosθ+3.

分析 首先把圓的參數(shù)轉(zhuǎn)化成直角坐標(biāo)方程,進(jìn)一步把直角坐標(biāo)方程轉(zhuǎn)化成極坐標(biāo)方程.

解答 解:圓C的參數(shù)方程為$\left\{\begin{array}{l}x=1+2cosφ\(chéng)\ y=2sinφ\(chéng)end{array}\right.$(φ為參數(shù)).
轉(zhuǎn)化為直角坐標(biāo)方程為:(x-1)2+y2=4.
整理得:x2+y2=2x+3,
轉(zhuǎn)化成極坐標(biāo)方程為:ρ2=2ρcosθ+3,
故答案為:ρ2=2ρcosθ+3

點(diǎn)評(píng) 本題考查的知識(shí)要點(diǎn):圓的參數(shù)方程與直角坐標(biāo)方程的互化,圓的直角坐標(biāo)方程與極坐標(biāo)方程的互化,主要考查學(xué)生的應(yīng)用能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,且滿(mǎn)足(a-sinB)cosC=cosBsinC,c=1.
(Ⅰ)求∠C的大。
(Ⅱ)求a2+b2的最大值,并求取得最大值時(shí)∠A,∠B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求下列函數(shù)的定義域:
(1)y=$\sqrt{-cosx}$+$\sqrt{sinx}$;
(2)y=$\sqrt{3+lo{g}_{\frac{1}{2}}x}$+$\sqrt{cosx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若非負(fù)實(shí)數(shù)x、y滿(mǎn)足$\left\{\begin{array}{l}x+2y-4≥0\\ 2x+y-3≥0\end{array}\right.$,則x+y的最小值為$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知t是正實(shí)數(shù),如果不等式組$\left\{\begin{array}{l}{x+y≤t}\\{x-y≤0}\\{x≥0}\end{array}\right.$表示的區(qū)域內(nèi)存在一個(gè)半徑為1的圓,則t的最小值為2+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,O為中線BD上的一個(gè)動(dòng)點(diǎn),若BD=6,則$\overrightarrow{OB}•({\overrightarrow{OA}+\overrightarrow{OC}})$的最小值是( 。
A.0B.-9C.-18D.-24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.記集合$A=\left\{(x,y)|{x}^{2}+{y}^{2}≤1\right\},B=\{(x,y)|\left\{\begin{array}{l}x+y≤1\\ x≥0\\ y≥0\end{array}\right.\}$,構(gòu)成的平面區(qū)域分別為M,N,現(xiàn)隨機(jī)地向M中拋一粒豆子(大小忽略不計(jì)),則該豆子落入N中的概率為$\frac{1}{2π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$f(x)=x+\frac{a}{x}+lnx,(a∈R)$,
(Ⅰ)若f(x)在點(diǎn)(1,f(1))處的切線與x軸平行,求實(shí)數(shù)a的值及f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a≥2時(shí),存在兩點(diǎn)(x1,f(x1)),(x2,f(x2)),使得曲線y=f(x)在這兩點(diǎn)處的切線互相平行,求證x1+x2>8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在正方體的8個(gè)頂點(diǎn),12條棱的中點(diǎn),6個(gè)面的中心及正方體的中心共27個(gè)點(diǎn)中,共線的三點(diǎn)組的個(gè)數(shù)是49.

查看答案和解析>>

同步練習(xí)冊(cè)答案