4.在平面直角坐標系xOy,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個漸近線的方程為y=$\sqrt{3}$x,則該雙曲線的離心率為2.

分析 求出雙曲線的漸近線方程y=±$\frac{a}$x,由題意可得b=$\sqrt{3}$a,由a,b,c的關(guān)系和離心率公式計算即可得到所求值.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程為y=±$\frac{a}$x,
由一條漸近線的方程為y=$\sqrt{3}$x,可得b=$\sqrt{3}$a,
即有c=$\sqrt{{a}^{2}+^{2}}$=2a,
即有e=$\frac{c}{a}$=2.
故答案為:2.

點評 本題考查雙曲線的離心率的求法,注意運用漸近線方程和基本量的關(guān)系,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知數(shù)列{an}中,a1=1,其前n項和為Sn,且滿足an=$\frac{{2S}_{n}^{2}}{2{S}_{n}-1}$(n≥2),則數(shù)列{an}的前n項和為Sn=$\frac{1}{2n-1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)f(x)=|ln(x+1)|,已知f(a)=f(b)(a<b),則( 。
A.a+b>0B.a+b>1C.2a+b>0D.2a+b>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC⊥AB,E,F(xiàn),H分別是AC,AB′,BC的中點.
(1)證明:EF⊥AH
(2)求四面體E-FAH的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=x2-1,g(x)=a|x-1|.
(Ⅰ)若|f(x)|=g(x)有且僅有兩個不同的解,求a的值;
(Ⅱ)若當x∈R時,不等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)若a<0時,求G(x)=|f(x)|+g(x)在[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求以拋物線y2=4x的焦點為圓心,且過坐標原點的圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AB=CD=1,AC=$\sqrt{3}$,AD=DE=2.
(Ⅰ)在線段CE上取一點F,作BF∥平面ACD(只需指出F的位置,不需證明);
(Ⅱ)對(Ⅰ)中的點F,求三棱錐B-FCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知圓錐曲線$C:\left\{{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}}\right.(α為參數(shù))$和定點$A({0,\sqrt{3}})$,F(xiàn)1,F(xiàn)2是此圓錐曲線的左、右焦點,以原點O為極點,以x軸的正半軸為極軸建立極坐標系.
(Ⅰ)求直線AF2的極坐標方程;
(Ⅱ)經(jīng)過點F1且與直線AF2垂直的直線l交此圓錐曲線于M,N兩點,求||MF1|-|NF1||的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.等差數(shù)列{an}中,已知an>0,a1+a2+a3=15,且a1+2,a2+5,a3+13構(gòu)成等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

同步練習冊答案