11.設(shè)數(shù)列{an}的前n項和為Sn,已知an=$\frac{{2{S_n}+1}}{3}$,n∈N*
(1)求通項公式an及Sn;
(2)設(shè)bn=|an-10|,求數(shù)列{bn}的前n項和Tn

分析 (1)an=$\frac{{2{S_n}+1}}{3}$,則an+1=$\frac{2{S}_{n+1}+1}{3}$,an-1-an=$\frac{2({S}_{n+1}-{S}_{n})}{3}$=$\frac{2}{3}{a}_{n+1}$,整理an-1=3an,當n=1時,求得a1,求得數(shù)列{an}是等差數(shù)列,即可求得數(shù)列{an}的通項公式an及Sn
(2)求得bn的通項公式,分別求得當n≤3時及當n≥4時數(shù)列{bn}的前n項和Tn

解答 解:(1)由題意,an=$\frac{{2{S_n}+1}}{3}$,n∈N*,則an+1=$\frac{2{S}_{n+1}+1}{3}$,
作差得:an+1-an=$\frac{2({S}_{n+1}-{S}_{n})}{3}$=$\frac{2}{3}{a}_{n+1}$,
化簡得:an+1=3an,
又n=1時,a1=$\frac{2{S}_{1}+1}{3}$=$\frac{2{a}_{1}+1}{3}$,解得a1=1,
故數(shù)列{an}是首項為1,公比為3的等比數(shù)列,則an=3n-1
Sn=$\frac{1(1-{3}^{n})}{1-3}$=$\frac{{3}^{n}-1}{2}$;
(2)an-10=3n-1-10,
則bn=|an-10|=$\left\{\begin{array}{l}{10-{3}^{n-1}}&{n≤3}\\{{3}^{n-1}-10}&{n≥4}\end{array}\right.$,
當n≤3時,Tn=10n-$\frac{1(1-{3}^{n})}{1-3}$=10n-$\frac{{3}^{n}-1}{2}$,
當n≥4時,Tn=T3+$\frac{{3}^{3}(1-{3}^{n-3})}{1-3}$-10(n-3)=17+$\frac{{3}^{n}-27}{2}$-10+30=$\frac{{3}^{n}-20n+67}{2}$
綜上則Tn=$\left\{\begin{array}{l}{\frac{20n-{3}^{n}+1}{2}}&{(n≤3)}\\{\frac{{3}^{n}-20n+67}{2}}&{(n≥4)}\end{array}\right.$.

點評 本題考查利用數(shù)列的遞推公式求通項公式,考查等比通項公式及前n項和公式,考查分類討論法,綜合考查分析問題及解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.表面積為12π的球的內(nèi)接正方體的體積為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若x,y滿足條件$\left\{{\begin{array}{l}{x≥y}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,則z=2x-y的最大值為( 。
A.5B.1C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知條件p:$\frac{4}{x-1}$≤-1,條件q:x2+x<a2-a,且p是q的一個必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某工廠生產(chǎn)A,B兩種型號的童車,每種童車都要經(jīng)過機械、油漆和裝配三個車間進行加工,根據(jù)該廠現(xiàn)有的設(shè)備和勞動力等條件,可以確定各車間每日的生產(chǎn)能力,我們把它們拆合成有效工時來表示.現(xiàn)將各車間每日可利用的有效工時數(shù)、每輛童車的各個車間加工時所花費的工時數(shù)以及每輛童車可獲得的利潤情況列成如表:
車間每輛童車所需的加工工時有效工時(小時/日)
AB
機械0.81.240
油漆0.60.830
裝配0.40.625
利潤(元/輛)610 
試問這兩種型號的童車每日生產(chǎn)多少輛,才能使工廠所獲得的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.10件產(chǎn)品中有7件正品,3件次品,從中任取1件,則取到次品的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{7}{10}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.不等式$\frac{2x}{3x-1}$>1的解為( 。
A.$(\frac{1}{3},\frac{1}{2})$B.$(\frac{1}{2},1)$C.$(\frac{1}{3},1)$D.$(-\frac{1}{3},\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設(shè)命題p:函數(shù)f(x)=lg(x2+ax+1)的定義域為R;命題q:函數(shù)f(x)=x2-2ax-1在(-∞,-1]上單調(diào)遞減.若命題“p∨q”為真,“p∧q”為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 0≤y≤3\end{array}\right.$,若目標函數(shù)z=y-ax僅在點(5,3)處取得最小值,則實數(shù)a的取值范圍為(1,+∞).

查看答案和解析>>

同步練習冊答案