3.不等式$\frac{2x}{3x-1}$>1的解為( 。
A.$(\frac{1}{3},\frac{1}{2})$B.$(\frac{1}{2},1)$C.$(\frac{1}{3},1)$D.$(-\frac{1}{3},\frac{1}{2})$

分析 先化簡不等式,再等價轉(zhuǎn)化為對應(yīng)一元二次不等式,由一元二次不等式解法求出不等式的解集.

解答 解:由$\frac{2x}{3x-1}>1$得,$\frac{-x+1}{3x-1}>0$,
∴(3x-1)(x-1)<0,解得$\frac{1}{3}$<x<1,
∴不等式的解集是$(\frac{1}{3},1)$,
故選C.

點評 本題考查了分式不等式的轉(zhuǎn)化問題,以及一元二次不等式解法,考查轉(zhuǎn)化思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.從0,2中選一個數(shù)字,從1,3,5中選兩個數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),其中偶數(shù)的個數(shù)為( 。
A.24B.18C.12D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如表:(單位/人)
幾何題代數(shù)題總計
男同學(xué)22830
女同學(xué)81220
總計302050
(1)能事?lián)伺袛嘤?7.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)現(xiàn)從選擇做幾何題的8名女生(其中包括甲、乙兩人)中任意抽取兩人對她們的答題情況進(jìn)行全程研究,記甲、乙兩人被抽到的人數(shù)為X,求X的分布列及期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項和為Sn,已知an=$\frac{{2{S_n}+1}}{3}$,n∈N*
(1)求通項公式an及Sn;
(2)設(shè)bn=|an-10|,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從2男3女共5名同學(xué)中任選2名(每名同學(xué)被選中的機(jī)會均等),這2名都是男生或都是女生的概率等于$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某同學(xué)有7本工具書,其中語文2本、英語2本、數(shù)學(xué)3本,現(xiàn)在他把這7本書放到書架上排成一排,要求2本語文書相鄰、2本英語書相鄰、3本數(shù)學(xué)書任意兩本不相鄰,則不同的排法種數(shù)為( 。
A.12B.24C.48D.720

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,角A,B,C所對的邊分別為a,b,c,若A,B,C成等差數(shù)列,且b=1,則△ABC面積的最大值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=$\sqrt{3}$sin2x-cos2x的圖象可由函數(shù)y=2sin2x的圖象至少向右平移$\frac{π}{12}$個單位長度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,定義在R上的增函數(shù)是( 。
A.$y=x-\frac{1}{x}$B.y=lg|x|C.$y=\root{3}{x}$D.$y=\sqrt{x^2}$

查看答案和解析>>

同步練習(xí)冊答案