4.已知f(x)=x5-5x4+10x3-10x2+5x-1,則f(1+$\sqrt{2}$)的值為4$\sqrt{2}$.

分析 利用二項(xiàng)式定理可得f(x)=(x-1)5,由此求得f(1+$\sqrt{2}$)的值.

解答 解:∵已知f(x)=x5-5x4+10x3-10x2+5x-1=(x-1)5,∴f(1+$\sqrt{2}$)=${(1+\sqrt{2}-1)}^{5}$=${(\sqrt{2})}^{5}$=4$\sqrt{2}$,
故答案為:4$\sqrt{2}$.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}中,a1+a5=6,則a1+a2+a3+a4+a5=(  )
A.10$\sqrt{6}$B.5$\sqrt{6}$C.30D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)z1=-3+4i,z2=2-3i,則z1+z2在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若正數(shù)x,y滿足xy+2x+y=8,則x+y的最小值等于2$\sqrt{10}$-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=2an+n,bn=2(an+n+1),cn=(4+2an-an+1)bn,其中λ為實(shí)數(shù),n為正整數(shù).
(1)若a1、b2、a3成等差數(shù)列,求λ的值;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)當(dāng)λ=-1時,設(shè)Tn為數(shù)列{cn}的前n項(xiàng)和,求Tn及Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=|x-1|,設(shè)f1(x)=f(x),fn(x)=fn-1(f(x))(n>1,n∈N*),令函數(shù)F(x)=fn(x)-m,若m∈(0,1)時,函數(shù)F(x)有且只有8各不同的零點(diǎn),這8個零點(diǎn)按從小到大的順序分別記為x1、x2、x3、x4、x5、x6、x7、x8,則x1x2x5x6+x3x4x7x8的取值范圍是(-6,16).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在區(qū)間[-1,1]內(nèi)隨機(jī)取兩個數(shù)分別記為a,b,則使得函數(shù)f(x)=x2+2ax-b2+1有零點(diǎn)的概率為1-$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知i是虛數(shù)單位,復(fù)數(shù)z滿足(z-2)i=-3-i.
(1)求z;
(2)若復(fù)數(shù)$\frac{x+i}{z}$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知m∈R,復(fù)數(shù)z=$\frac{{{m^2}-2m}}{m+1}$+(m2-2m-3)i,當(dāng)m為何值時,
(1)z∈R;
(2)z是純虛數(shù);
(3)z對應(yīng)的點(diǎn)位于復(fù)平面第二象限.

查看答案和解析>>

同步練習(xí)冊答案