分析 根據(jù)函數(shù)的特征,要對t進行分類討論,求出t的最大值,再根據(jù)a是正實數(shù),求出g(a)的值域.
解答 解:∵f(x)=x2-2x+a∴函數(shù)f(x)的圖象開口向上,對稱軸為x=1
①0<t≤1時,f(x)在[0,t]上為減函數(shù),f(x)max=f(0)=a,f(x)min=f(t)=t2-2t+a
∵對任意的x∈[0,t],都有f(x)∈[-a,a].
∴-a=t2-2t+a,解得t=1-$\sqrt{1-2a}$(1+$\sqrt{1-2a}$舍去)
②t>1時,f(x)在[0,1]上為減函數(shù),在[1,t]上為增函數(shù),
則f(x)min=f(1)=a-1=-a,f(x)max=max{f(0),
f(t)}=max{a,t2-2t+a}=a
∴a=$\frac{1}{2}$,且t2-2t+a≤a,即1<t≤2
∵t的最大值為g(a)
∴綜上,g(a)=2或1-$\sqrt{1-2a}$
∴函數(shù)g(a)的值域為(0,1)∪{2}
故答案為:(0,1)∪{2}.
點評 本題考查二次函數(shù)的值域,屬于求二次函數(shù)的最值問題,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x1)>f(x2) | B. | f(x1)<f(x2) | ||
C. | f(x1)=f(x2) | D. | f(x2)與f(x2)的大小無法確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a2<b2 | B. | ab<b2 | C. | ($\frac{1}{2}$)a<($\frac{1}{2}$)b | D. | $\frac{a}$+$\frac{a}$>2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{1}{6}$,$\frac{1}{4}$) | B. | (-∞,-$\frac{1}{6}$)∪($\frac{1}{4}$,+∞) | C. | [-$\frac{1}{6}$,$\frac{1}{4}$) | D. | (-$\frac{1}{6}$,$\frac{1}{4}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com