7.設(shè)A、B是非空集合,定義A⊙B={x|x∈A,且x∉B},已知A={x|x2-x-2≤0},B={x|y=$\frac{1}{\sqrt{1-x}}$},則A⊙B=( 。
A.B.[-1,2]C.[1,2]D.(1,2]

分析 分別求出集合A,B,由題意可知A⊙B=A∩(∁RB),問題得以解決.

解答 解:由題意可知A⊙B=A∩(∁RB),
A={x|x2-x-2≤0}=[-1,2],B={x|y=$\frac{1}{\sqrt{1-x}}$}=(-∞,1),
故∁RB=[1,+∞),
所以A⊙B=A∩(∁RB)=[1,2]
故選:C.

點(diǎn)評 本題考查集合的交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知過原點(diǎn)的動直線l與圓C1:x2+y2-6x+5=0.
(1)求直線l與圓相交時(shí),它的斜率K的取值范圍;
(2)當(dāng)l與圓相交于不同的兩點(diǎn)A,B時(shí),求線段AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,角A,B,C所對的邊分別是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}$=$\frac{sinC}{c}$,b2+c2-a2=$\frac{6}{5}$bc,則tanB=(  )
A.4B.$\frac{1}{4}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC中,a=$\sqrt{13}$,∠A=60°,S=3$\sqrt{3}$,求b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知三點(diǎn)A(2,3),B(-1,-1),C(6,k),其中k為常數(shù).若|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角的余弦值為0或-$\frac{24}{25}$,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若角960°的終邊上有一點(diǎn)(-4,a),則a的值是-4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某學(xué)生家長為繳納該學(xué)生上大學(xué)時(shí)的教育費(fèi),于2003年8月20號從銀行貸款a元,為還清這筆貸款,該家長從2004年起每年的8月20號便去銀行償還確定的金額,計(jì)劃恰好在貸款的m年后還清,若銀行按年利息為p的復(fù)利計(jì)息(復(fù)利:即將一年后的貸款利息也納入本金計(jì)算新的利息),則該學(xué)生家長每年的償還金額是( 。
A.$\frac{a}{m}$B.$\frac{{ap{{(1+p)}^{m+1}}}}{{{{(1+p)}^{m+1}}-1}}$
C.$\frac{{ap{{(1+p)}^{m+1}}}}{{{p^m}-1}}$D.$\frac{{ap{{(1+p)}^m}}}{{{{(1+p)}^m}-1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知拋物線C:y2=4x的焦點(diǎn)為F,P為C的準(zhǔn)線上一點(diǎn),Q (在第一象限)是直線PF與C的一個(gè)交點(diǎn),若$\overrightarrow{PQ}$=2$\overrightarrow{QF}$,則QF的長為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.請閱讀下列不等式的證法:已知a1,a2∈R,a12+a22=1,求證:|a1+a2|≤$\sqrt{2}$.
證明:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22
則f(x)=2x2-2(a1+a2)x+a12+a22=2x2-2(a1+a2)x+1.
因?yàn)閷σ磺衳∈R,恒有f(x)≥0,所以△=4(a1+a22-8≤0,從而得|a1+a2|≤$\sqrt{2}$.
請回答下面的問題:
若a1,a2,…,an∈R,a12+a22+…+an2=1,請寫出上述結(jié)論的推廣形式,并進(jìn)行證明.

查看答案和解析>>

同步練習(xí)冊答案