【題目】已知橢圓),若橢圓上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到直線(xiàn)的距離等于短半軸的長(zhǎng),已知,過(guò)的直線(xiàn)與橢圓交于兩點(diǎn).

1)求橢圓的方程;

2)求的取值范圍.

【答案】(1);(2

【解析】試題分析:1)利用橢圓C上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為且右焦點(diǎn)到直線(xiàn)x=

的距離等于短半軸的長(zhǎng).已知點(diǎn)P4,0),列出方程組,求出a,b,即可求橢圓C的方程;2)聯(lián)立直線(xiàn)與橢圓方程的方程組,設(shè)點(diǎn)Mx1,y1),Nx2,y2),利用韋達(dá)定理,代入向量的數(shù)量積求解即可.

試題解析:

1由題意橢圓上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到直線(xiàn)的距離等于短半軸的長(zhǎng)已知點(diǎn),知,解得

故橢圓的方程.

2由題意知直線(xiàn)的斜率存在,設(shè)直線(xiàn)的方程為.

,

設(shè)點(diǎn), ,

,

,

,

,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , S3=15,a3和a5的等差中項(xiàng)為9
(1)求an及Sn
(2)令bn= (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的一個(gè)焦點(diǎn)與的焦點(diǎn)重合,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)設(shè)直線(xiàn) )與橢圓交于兩點(diǎn),且以為對(duì)角線(xiàn)的菱形的一頂點(diǎn)為,求面積的最大值(為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}中,前m(m為奇數(shù))項(xiàng)的和為77,其中偶數(shù)項(xiàng)之和為33,且a1﹣am=18,則數(shù)列{an}的通項(xiàng)公式為an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式為12x2﹣ax>a2
(1)當(dāng)a=2時(shí),求不等式的解集;
(2)當(dāng)a∈R時(shí),求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), ).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)處取得極大值,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式的大小關(guān)系正確的是(
A.sin11°>sin168°
B.sin194°<cos160°
C.tan(﹣ )<tan(﹣
D.cos(﹣ )>cos

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次測(cè)試后,一位老師從本班48同學(xué)中隨機(jī)抽取6位同學(xué),他們的語(yǔ)文、歷史成績(jī)?nèi)缦卤恚?/span>

學(xué)生編號(hào)

1

2

3

4

5

6

語(yǔ)文成績(jī)

60

70

74

90

94

110

歷史成績(jī)

58

63

75

79

81

88

(1)若規(guī)定語(yǔ)文成績(jī)不低于90分為優(yōu)秀,歷史成績(jī)不低于80分為優(yōu)秀,以頻率作概率,分別估計(jì)該班語(yǔ)文、歷史成績(jī)優(yōu)秀的人數(shù);

(2)用上表數(shù)據(jù)畫(huà)出散點(diǎn)圖易發(fā)現(xiàn)歷史成績(jī)與語(yǔ)文成績(jī)具有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系,求的線(xiàn)性回歸方程(系數(shù)精確到0.1).

參考公式:回歸直線(xiàn)方程是,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在寒假社會(huì)實(shí)踐活動(dòng)中,對(duì)白天平均氣溫與某家奶茶店的品牌飲料銷(xiāo)量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫)與該奶茶店的品牌飲料銷(xiāo)量(杯),得到如表數(shù)據(jù):

日期

1月11號(hào)

1月12號(hào)

1月13號(hào)

1月14號(hào)

1月15號(hào)

平均氣溫

9

10

12

11

8

銷(xiāo)量(杯)

23

25

30

26

21

(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

(2)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸方程式;

(3)根據(jù)(2)所得的線(xiàn)性回歸方程,若天氣預(yù)報(bào)1月16號(hào)的白天平均氣溫為,請(qǐng)預(yù)測(cè)該奶茶店這種飲料的銷(xiāo)量.

(參考公式:,

查看答案和解析>>

同步練習(xí)冊(cè)答案