分析 根據(jù)數(shù)列的遞推關(guān)系,利用構(gòu)造法構(gòu)造{an+2}是公比q=2,首項(xiàng)為a1+2=2+2=4的等比數(shù)列,求出數(shù)列{bn}的通項(xiàng)公式,求出Sn,結(jié)合不等式的性質(zhì)進(jìn)行求解即可.
解答 解:∵a1=2,an+1-2an=2,
∴an+1=2an+2,
則an+1+2=2an+2+2=2(an+2),
則$\frac{{a}_{n+1}+2}{{a}_{n}+2}$=2,
則數(shù)列{an+2}是公比q=2,首項(xiàng)為a1+2=2+2=4的等比數(shù)列,
則an+2=4•2n-1=2n+1,
則bn=log(an+2)=log2(2n+1)=n+1,
則Sn=2+3+…+(n+1)=$\frac{(2+n+1)×n}{2}$=$\frac{(n+3)n}{2}$,
則$\frac{{{S_n}+4}}{n}$=$\frac{\frac{(n+3)n}{2}+4}{n}$=$\frac{n+3}{2}$+$\frac{4}{n}$=$\frac{n}{2}$+$\frac{4}{n}$+$\frac{3}{2}$=$\frac{1}{2}$(n+$\frac{8}{n}$)+$\frac{3}{2}$,
∵t=n+$\frac{8}{n}$在[1,$\sqrt{8}$)上遞減,在[$\sqrt{8}$,+∞)為增函數(shù),
則當(dāng)n=2時(shí),t=n+$\frac{8}{n}$=2+$\frac{8}{2}$=2+4=6,
當(dāng)n=3時(shí),t=n+$\frac{8}{n}$=3+$\frac{8}{3}$=$\frac{17}{3}$>6,
則當(dāng)n=2時(shí),$\frac{{{S_n}+4}}{n}$取得最小值此時(shí)$\frac{{{S_n}+4}}{n}$═$\frac{1}{2}$×6+$\frac{3}{2}$=$\frac{9}{2}$,
故答案為:$\frac{9}{2}$,
點(diǎn)評(píng) 本題主要考查數(shù)列求和的應(yīng)用,根據(jù)遞推數(shù)列,利用構(gòu)造法求出數(shù)列的通項(xiàng)公式,結(jié)合不等式的性質(zhì)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4x+2y-3=0 | B. | 4x-2y+3=0 | C. | x+2y-3=0 | D. | x-2y+3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com