13.已知四棱錐P-ABCD的外接球的表面積為12π,ABCD是邊長(zhǎng)為2的正方形,PA=PB,平面PAB⊥平面ABCD,則△PCD的面積為(  )
A.$\sqrt{7+2\sqrt{2}}$B.$\sqrt{14}$C.$\sqrt{15}$D.4

分析 由題意畫出圖形,設(shè)P到AB的距離為d,由球的半徑相等列式求得d,進(jìn)一步求得△PCD的邊CD上的高,代入三角形面積公式得答案.

解答 解:如圖,設(shè)四棱錐P-ABCD的外接球的半徑為r,

由四棱錐P-ABCD的外接球的表面積為12π,得4πr2=12π,r=$\sqrt{3}$.
∵ABCD是邊長(zhǎng)為2的正方形,設(shè)其中心為M,則MC=$\frac{1}{2}AC=\sqrt{2}$,
∴OM=1,又PA=PB,平面PAB⊥平面ABCD,
設(shè)P到AB的距離為d,則$(d-1)^{2}+{1}^{2}=(\sqrt{3})^{2}$,
解得:d=1+$\sqrt{2}$.
∴△PCD的邊CD上的高h(yuǎn)=$\sqrt{{2}^{2}+(1+\sqrt{2})^{2}}=\sqrt{7+2\sqrt{2}}$,
則△PCD的面積為S=$\frac{1}{2}×2×\sqrt{7+2\sqrt{2}}=\sqrt{7+2\sqrt{2}}$.
故選:A.

點(diǎn)評(píng) 本題考查棱錐的結(jié)構(gòu)特征,考查了空間想象能力和思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知z=a+bi(a、b∈R,i是虛數(shù)單位,$\overline{z_1}$是z的共軛復(fù)數(shù)),z1,z2∈C,定義D(z)=||z||=|a|+|b|,D(z1,z2)=||z1-z2||.現(xiàn)有三個(gè)命題:
①D(${\overline{z_1}}$)=D(z1);       ②D(z1,z2)=D(z2,z1);      ③λD(z1,z2)=D(λz1,λz2).
其中為真命題的是( 。
A.①②③B.①③C.②③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=ax2-(2a-1)x-lnx,其中a∈R.
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a<0時(shí),求函數(shù)f(x)在區(qū)間[$\frac{1}{2}$,1]上的最小值;
(Ⅲ)記函數(shù)y=f(x)的圖象為曲線C,設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上不同的兩點(diǎn),點(diǎn)M為線段AB的中點(diǎn),過(guò)點(diǎn)M作x軸的垂線交曲線C于點(diǎn)N,試判斷曲線C在N處的切線是否平行于直線AB?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=aex-x-1,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈(0,+∞)時(shí),f(x)>0恒成立,求a的取值范圍;
(Ⅲ)求證:當(dāng)x∈(0,+∞)時(shí),ln$\frac{{e}^{x}-1}{x}$>$\frac{x}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.一書架有五層,從下到上依次稱為第1層,第2層,…,第5層,今把15冊(cè)圖書分放到書架的各層上,有些層上可以不放,證明:無(wú)論怎樣放法,書架每層上的圖書冊(cè)數(shù),以及相鄰兩層上的圖書冊(cè)數(shù)之和,這些數(shù)中至少有兩個(gè)是相等的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)a,b,c∈R+,且a+b+c=1,則$\frac{1}{{a}^{2}}$$+\frac{1}{^{2}}$$+\frac{1}{{c}^{2}}$的最小值是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=$\frac{x+1}{{e}^{x}}$.
(1)求函數(shù)y=f(x)最值;
(2)若f(x1)=f(x2)(x1≠x2),求證:x1+x2>O.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義:若函數(shù)y=f(x)對(duì)定義域內(nèi)的任意x,都有f(m+x)=f(m-x)恒成立,則稱函數(shù)y=f(x)的圖象的直線x=m對(duì)稱,若函數(shù)f(x)=cx3+ax2+bx+1關(guān)于直線x=$\frac{1}{2}$對(duì)稱,且a>4(${\sqrt{e}$+1),則函數(shù)g(x)=ex+f(x)在下列區(qū)間內(nèi)存在零點(diǎn)的是( 。
A.(-1,-$\frac{1}{2}}$)B.(-$\frac{1}{2}$,0)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)全集U=R,集合A={x|-1≤x<1},B={x|0<x≤2}.
(1)求(∁U A)∩B;
(2)求∁U(A∩B).

查看答案和解析>>

同步練習(xí)冊(cè)答案