9.設(shè)A={x|x=n,n∈Z},B={x|x=$\frac{n}{2}$,n∈Z},C={x|x=n+$\frac{1}{2}$,n∈Z},那么正確的( 。
A.A=BB.B=A∪CC.B=A∩CD.B⊆C

分析 由B={x|x=$\frac{n}{2}$,n∈Z},對n進行分類討論,即可得出結(jié)論.

解答 解:由題意,∵B={x|x=$\frac{n}{2}$,n∈Z},
∴當n=2k,k∈Z時,B={x|x=k,k∈Z}
當n=2k+1,k∈Z時,B={x|x=k+$\frac{1}{2}$,k∈Z}
∴B=A∪C,
故選B.

點評 本題考查集合的運算,考查分類討論的數(shù)學思想,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.六個人從左到右排成一行,最右端只能排甲或乙,最左端不能排乙,則不同的排法種數(shù)共有( 。
A.192B.216C.240D.288

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若(3x-$\frac{1}{\root{3}{{x}^{2}}}$)n的二項式系數(shù)和為64,則展開式中含有x的項為-540x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,BC=2,AB+AC=6,若AB=x,AD=y,D為BC的中點,試建立y與x的函數(shù)關(guān)系,并指出定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,若a>b且tanB•tanC=-1,則$\frac{c}$的取值范圍是(0,$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是正方體被兩個平面所截得到的某幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{16}{3}$B.6C.$\frac{20}{3}$D.$\frac{22}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,且點O到平面ABC的距離為2,則球O的表面積為20π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在正三棱錐S-ABC中,M、N分別是棱SC、BC的中點,且MN⊥AM,若側(cè)棱SA=2$\sqrt{3}$,則此正三棱錐S-ABC的外接球的體積是( 。
A.12πB.32πC.36πD.48π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知sinx+cosx=1,則(sinx)2018+(cosx)2018=1.

查看答案和解析>>

同步練習冊答案