分析 (1)將a=1代入,利用零點(diǎn)分段法,可將函數(shù)的解析式化成分段函數(shù)的形式,進(jìn)而分類討論各段上f(x)≤4的解,最后綜合討論結(jié)果,可得不等式f(x)≤4的解集.
(2)利用零點(diǎn)分段法,可將函數(shù)的解析式化成分段函數(shù)的形式,結(jié)合一次函數(shù)的單調(diào)性可分析出函數(shù)的f(x)的單調(diào)性,進(jìn)而求出函數(shù)f(x)的最小值,得到實(shí)數(shù)a的取值.
解答 解:(1)當(dāng)a=1時,不等式f(x)≤4可化為:|x|+2|x-1|≤4,
當(dāng)x<0時,原不等式可化為:2-3x≤4,解得:x≥$-\frac{2}{3}$,
∴$-\frac{2}{3}$≤x<0,
當(dāng)0≤x≤1時,原不等式可化為:2-x≤4,解得:x≥-2,
∴0≤x≤1,
當(dāng)x>1時,原不等式可化為:3x-2≤4,解得:x≤2,
∴0<x≤2,
綜上所述不等式f(x)≤8的解集為[$-\frac{2}{3}$,2]
(2)∵f(x)=|x|+2|x-a|=$\left\{\begin{array}{l}2a-3x,x<0\\ 2a-x,0≤x≤a\\ 3x-2a,x>a\end{array}\right.$
則f(x)在(-∞,a)上單調(diào)遞減,在(a,+∞)上單調(diào)遞增,
∴當(dāng)x=a時,f(x)取最小值a,
∴a=4
點(diǎn)評 本題考查的知識點(diǎn)是分段函數(shù)的應(yīng)用,絕對值不等式,其中利用零點(diǎn)分段法,將函數(shù)的解析式化成分段函數(shù)的形式,進(jìn)而分類討論是解答此類問題的通法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 2$\sqrt{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 160 | B. | 180 | C. | 200 | D. | 220 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com