分析 (Ⅰ)把要解的不等式等價轉化為與之等價的三個不等式組,求出每個不等式組的解集,再取并集,即得所求.
(Ⅱ)由條件利用基本不等式求得$\frac{1}{m}$+$\frac{1}{n}$≥4,結合題意可得|x-a|-|3x+2|≤4恒成立.令g(x)=|x-a|-|3x+2|,利用單調性求得它的最大值,再由此最大值小于或等于4,求得a的范圍.
解答 解:(Ⅰ)不等式f(x)<4-|x-1|,即|3x+2|+|x-1|<4,
∴$\left\{\begin{array}{l}{x<-\frac{2}{3}}\\{-3x-2-x+1<4}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{-\frac{2}{3}≤x<1}\\{3x+2+1-x<4}\end{array}\right.$②,或 $\left\{\begin{array}{l}{x≥1}\\{3x+2+x-1<4}\end{array}\right.$③.
解①求得-$\frac{5}{4}$<x<-$\frac{2}{3}$,解②求得-$\frac{2}{3}$≤x<$\frac{1}{2}$,解③求得x∈∅.
綜上可得,不等式的解集為(-$\frac{5}{4}$,$\frac{1}{2}$).
(Ⅱ)已知m+n=1(m,n>0),∴$\frac{1}{m}$+$\frac{1}{n}$=(m+n)($\frac{1}{m}$+$\frac{1}{n}$)=2+$\frac{n}{m}$+$\frac{m}{n}$≥2+2=4,當且僅當m=n=$\frac{1}{2}$時,取等號.
再根據(jù)|x-a|-f(x)≤$\frac{1}{m}$+$\frac{1}{n}$(a>0)恒成立,可得|x-a|-f(x)≤4,即|x-a|-|3x+2|≤4.
設g(x)=|x-a|-|3x+2|=$\left\{\begin{array}{l}{2x+2+a,x<-\frac{2}{3}}\\{-4x+2+a,-\frac{2}{3}≤x≤a}\\{-2x-2-a,x>a}\end{array}\right.$,故函數(shù)g(x)的最大值為g(-$\frac{2}{3}$)=$\frac{2}{3}$+a,
再由$\frac{2}{3}$+a≤4,求得 0<a≤$\frac{10}{3}$.
點評 本題主要考查絕對值不等式的解法,函數(shù)的恒成立問題,基本不等式的應用,體現(xiàn)了轉化、分類討論的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{{2}^{n-1}}$ | B. | $\frac{1}{n}$ | C. | $\frac{n}{n+1}$ | D. | $\frac{1}{2n-1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x語文 人數(shù) y數(shù)學 | A | B | C |
A | 7 | 20 | 5 |
B | 9 | 18 | 6 |
C | a | 4 | b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | |BM|是定值 | B. | 點M在某個球面上運動 | ||
C. | 存在某個位置,使DE⊥A1C | D. | 存在某個位置,使MB∥平面A1DE |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com