【題目】如圖,,,,平面,.

1)若的中點(diǎn),的中點(diǎn),求證:平面;

2)求二面角的正弦值.

【答案】(1)證明見解析(2).

【解析】

1)根據(jù)題意,建立空間直角坐標(biāo)系,只需證明與平面的法向量垂直,即可證明平面.

2)分別求平面的法向量和平面的法向量,即可求得二面角的正弦值.

解:依題意,可以建立以為原點(diǎn),

分別以,,的方向?yàn)?/span>,,軸的正方向的空間直角坐標(biāo)系(如圖),

可得,,,,,

,,,.

1)證明:依題意,

設(shè)為平面的法向量,

,,

不妨令,可得

,可得,

又因?yàn)橹本平面,

所以平面.

2)依題意,可得,,.

設(shè)為平面的法向量,

,,

不妨令,可得

設(shè)為平面的法向量,

,,

不妨令,可得

因此有,于是.

所以,二面角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P12,3)、P2-4,5)和A-12),則過(guò)點(diǎn)A且與點(diǎn)P1、P2距離相等的直線方程為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正方形ABCD沿對(duì)角線BD折成直二面角A-BD-C,有如下四個(gè)結(jié)論

ACBD;

ACD是等邊三角形;

AB與平面BCD成60°的角;

AB與CD所成的角是60°.

其中正確結(jié)論的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是雙曲線的右支上一點(diǎn),分別為雙曲線的左右焦點(diǎn),的內(nèi)切圓的圓心橫坐標(biāo)為( )

A. B. 2C. D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,其中是自然對(duì)數(shù)的底數(shù),.

(1)當(dāng)時(shí),證明:;

(2)是否存在實(shí)數(shù),使的最小值為3,如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)的最大值為.

(1)求實(shí)數(shù)的值;

(2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接2019年全國(guó)文明城市評(píng)比,某市文明辦對(duì)市民進(jìn)行了一次文明創(chuàng)建知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查.每一位市民有且僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示:

組別

頻數(shù)

25

150

200

250

225

100

50

(1)由頻數(shù)分布表可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;

(2)在(1)的條件下,文明辦為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

(i)得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);

(ii)每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:

獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)

20

40

概率

現(xiàn)市民小王要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.

附:①;

②若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價(jià)為元,低于箱按原價(jià)銷售,不低于箱則有以下兩種優(yōu)惠方案:①以箱為基準(zhǔn),每多箱送箱;②通過(guò)雙方議價(jià),買方能以優(yōu)惠成交的概率為,以優(yōu)惠成交的概率為.

甲、乙兩單位都要在該廠購(gòu)買箱這種零件,兩單位都選擇方案②,且各自達(dá)成的成交價(jià)格相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

某單位需要這種零件箱,以購(gòu)買總價(jià)的數(shù)學(xué)期望為決策依據(jù),試問(wèn)該單位選擇哪種優(yōu)惠方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)射線的極坐標(biāo)方程為,若射線與曲線的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案