【題目】如圖,在四棱錐中,平面平面,點(diǎn)分別為的中點(diǎn).
(1)求證:平面平面;
(2)求二面角的余弦值.
【答案】(1)證明見解析; (2)
【解析】
(1)利用平行四邊形得,利用中位線得,即可求證;
(2)易證,,則以為原點(diǎn),分別以所在直線為軸,軸,軸建立空間直角坐標(biāo)系,分別求出平面與平面的法向量,再由法向量的夾角余弦值來求二面角的余弦值
(1)證明:,,
點(diǎn)是的中點(diǎn),且,
四邊形是平行四邊形,
,
又點(diǎn)是的中點(diǎn),
在中,,
平面,平面,
且,,
平面平面
(2),,
平面平面,且平面,平面平面,
平面,
以為原點(diǎn),分別以所在直線為軸,軸,軸建立空間直角坐標(biāo)系,
則由題,,點(diǎn)為的中點(diǎn)
為,為,為,為,
則,,
設(shè)平面與平面的法向量分別是,
則,,
即,,
令,則;令,則
則,
二面角的余弦值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)滿足以下兩個(gè)條件的有窮數(shù)列為階“期待數(shù)列”:①;②.
(1)分別寫出一個(gè)單調(diào)遞增的3階和4階“期待數(shù)列”;
(2)若某2013階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記階“期待數(shù)列”的前項(xiàng)和為,試證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:對任意實(shí)數(shù),都有;
(2)若,是否存在整數(shù),使得在上,恒有成立?若存在,請求出的最大值;若不存在,請說明理由.()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的方程為,過原點(diǎn)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,……,如此下去,一般地,過作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,設(shè)點(diǎn).
(1)指出,并求與的關(guān)系式;
(2)求的通項(xiàng)公式,并指出點(diǎn)列,,……,,……向哪一點(diǎn)無限接近?說明理由;
(3)令,數(shù)列的前項(xiàng)和為,設(shè),求所有可能的乘積的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義域均為D的三個(gè)函數(shù)f(x),g(x),h(x)滿足條件:對任意x∈D,點(diǎn)(x,g(x)與點(diǎn)(x,h(x)都關(guān)于點(diǎn)(x,f(x)對稱,則稱h(x)是g(x)關(guān)于f(x)的“對稱函數(shù)”.已知g(x)=,f(x)=2x+b,h(x)是g(x)關(guān)于f(x)的“對稱函數(shù)”,且h(x)≥g(x)恒成立,則實(shí)數(shù)b的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,側(cè)面底面,,是邊長為2的正三角形底面是菱形,點(diǎn)為的中點(diǎn)
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在一山坡處看對面山頂上的一座鐵塔,如圖所示,塔及所在的山崖可視為圖中的豎線,塔高為80米,山高為220米,為200米,圖中所示的山坡可視為直線且點(diǎn)在直線上,與水平地面的夾角為,.
(1)求塔尖到山坡的距離;(精確到米)
(2)問此同學(xué)(忽略身高)距離山崖的水平地面多高時(shí),觀看塔的視角最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,,,,平面截長方體得到一個(gè)矩形,且,.
(1)求截面把該長方體分成的兩部分體積之比;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一點(diǎn),過點(diǎn)作軸的垂線交軸于點(diǎn),點(diǎn)滿足
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)為直線上一點(diǎn),為坐標(biāo)原點(diǎn),且,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com