20.已知正項(xiàng)等比數(shù)列{an}滿足a7=a6+2a5,若存在兩項(xiàng)am,an使得$\sqrt{{a}_{m}{a}_{n}}=4{a}_{1}$,則$\frac{1}{m}+\frac{4}{n}$的最小值為(  )
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.不存在

分析 把所給的數(shù)列的三項(xiàng)之間的關(guān)系,寫出用第五項(xiàng)和公比來表示的形式,求出公比的值,整理所給的條件,寫出m,n之間的關(guān)系,用基本不等式得到最小值.

解答 解:∵a7=a6+2a5,
∴a5q2=a5q+2a5,
∴q2-q-2=0,
∴q=2,
∵存在兩項(xiàng)am,an使得$\sqrt{{a}_{m}{a}_{n}}=4{a}_{1}$,
∴aman=16a12,
∴qm+n-2=16=24,而q=2,
∴m+n-2=4,
∴m+n=6,
∴$\frac{1}{m}+\frac{4}{n}$=$\frac{1}{6}$(m+n)($\frac{1}{m}+\frac{4}{n}$)=$\frac{1}{6}$(5+$\frac{n}{m}$+$\frac{4m}{n}$)≥$\frac{1}{6}$(5+4)=$\frac{3}{2}$,當(dāng)且僅當(dāng)m=2,n=4時(shí)等號(hào)成立,
∴$\frac{1}{m}+\frac{4}{n}$的最小值為$\frac{3}{2}$,
故選:A.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)和基本不等式,實(shí)際上應(yīng)用基本不等式是本題的重點(diǎn)和難點(diǎn),注意當(dāng)兩個(gè)數(shù)字的和是定值,要求兩個(gè)變量的倒數(shù)之和的最小值時(shí),要乘以兩個(gè)數(shù)字之和

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.從數(shù)字1、2、3中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),則這個(gè)兩位數(shù)大于30的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)$f(x)=2sin(ωx+\frac{π}{3})$,且f(α)=-2,f(β)=0,|α-β|的最小值是$\frac{π}{2}$,則f(x)的單調(diào)遞增區(qū)間是( 。
A.$[kπ-\frac{5π}{12},kπ+\frac{π}{12}]\;\;(k∈Z)$B.$[kπ-\frac{π}{3},kπ+\frac{π}{6}]\;\;(k∈Z)$
C.$[2kπ-\frac{2π}{3},2kπ+\frac{π}{3}]\;\;(k∈Z)$D.$[2kπ-\frac{5π}{6},2kπ+\frac{π}{6}]\;(\;k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$({2+\sqrt{3}i})•z=-2\sqrt{3}i$(i是虛數(shù)單位),那么復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.程序框圖如圖所示,若其輸出結(jié)果是30,則判斷框中填寫的是( 。
A.i<7?B.i<5?C.i>7?D.i>5?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)變量x、y,滿足約束條件$\left\{\begin{array}{l}x+y≤3\\ x-y≥-1\\ y≤1\end{array}\right.$,則目標(biāo)函數(shù)Z=2x-3y的最小值為( 。
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知A,B,C為不共線的三點(diǎn),則“$\overrightarrow{AB}•\overrightarrow{CA}>0$”是“△ABC是鈍角三角形”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)f(x)=xlnx+ax2,a為常數(shù).
(1)若曲線y=f(x)在x=1處的切線過點(diǎn)A(0,-2),求實(shí)數(shù)a的值;
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2且xl<x2
①求證:$-\frac{1}{2}$<a<0
②求證:f (x2)>f (x1)>$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x(lnx+1)(x>0),f(x)的導(dǎo)數(shù)是f′(x).
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)F(x)=ax2+f′(x)(a∈R)的單調(diào)區(qū)間;
(3)若斜率為k的直線與曲線y=f′(x)交于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),求證:x1<$\frac{1}{k}$<x2

查看答案和解析>>

同步練習(xí)冊(cè)答案