14.已知雙曲線與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有相同的焦點(diǎn),它的一條漸近線方程為y=x,求雙曲線的方程.

分析 由已知得雙曲線的焦點(diǎn)坐標(biāo)為F($±\sqrt{5}$,0),設(shè)雙曲線方程為$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1,(a>0,b>0),由雙曲線的一條漸近線方程為y=x,能求出雙曲線方程.

解答 解:∵雙曲線與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有相同的焦點(diǎn),
∴雙曲線的焦點(diǎn)坐標(biāo)為F($±\sqrt{5}$,0),
∴設(shè)雙曲線方程為$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1,(a>0,b>0),
∵雙曲線的一條漸近線方程為y=x,
∴$\left\{\begin{array}{l}{a=b}\\{c=\sqrt{5}}\\{{c}^{2}={a}^{2}+^{2}}\end{array}\right.$,解得a=b=$\sqrt{\frac{5}{2}}$,
∴雙曲線方程為$\frac{{x}^{2}}{\frac{5}{2}}-\frac{{y}^{2}}{\frac{5}{2}}$=1.

點(diǎn)評(píng) 本題考查雙曲線方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)和雙曲線性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知M=sin100°-cos100°,N=$\sqrt{2}$(cos46°•cos78°+cos44°•cos12°),P=$\frac{1-tan10°}{1+tan10°}$,Q=$\frac{tan22°+tan23°}{1-tan22°tan23°}$,那么M,N,P,Q之間的大小順序是( 。
A.M<N<P<QB.P<Q<M<NC.N<M<Q<PD.Q<P<N<M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在梯形ABCD中,已知AD∥BC,AD=1,BD=2$\sqrt{10}$,∠CAD=$\frac{π}{4}$,tan∠ADC=-2,求:
(1)CD的長(zhǎng);
(2)△BCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)$\overrightarrow{a}$=(-1,3,2),$\overrightarrow$=(2,-3,-4),$\overrightarrow{c}$=(-3,12,6),證明三向量$\overrightarrow{a},\overrightarrow,\overrightarrow{c}$共面,并用$\overrightarrow{a}$和$\overrightarrow$表示$\overrightarrow{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{x}{{x}^{2}+2}$(x∈R),若f(x+$\frac{π}{3}$)=a有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是[-$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖在正方體ABCD-A1B1C1D1中,AC交BD于點(diǎn)O.
(1)證明:A1C⊥BC1;
(2)棱CC1上是否存在一點(diǎn)M,使得A1O⊥平面MBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若函數(shù)f(x)=x+$\frac{1}{x}$+2a-1為奇函數(shù),則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知數(shù)列{an}滿足a1=1,an+1-an=2n+2n,則{an}的通項(xiàng)公式為an=2n+n2-n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(λ,4λ-4),向量$\overrightarrow$=(2,4),若$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow{a}$|等于( 。
A.4B.2$\sqrt{2}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案