4.若函數(shù)f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$.
(1)求$\frac{f(2)}{f(\frac{1}{2})}$的值.
(2)求f(3)+f(4)+…+f(2015)+f(2016)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{2015}$)+f($\frac{1}{2016}$)的值.

分析 (1)化簡f(x),從而代入2及$\frac{1}{2}$,求出函數(shù)值即可;(2)化簡可得(x)+f($\frac{1}{x}$)=0,從而求得.

解答 解:(1)∵f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$=1-$\frac{2}{{x}^{2}+1}$,
∴$\frac{f(2)}{f(\frac{1}{2})}$=$\frac{1-\frac{2}{{2}^{2}+1}}{1-\frac{2}{{(\frac{1}{2})}^{2}+1}}$=-1;
(2)∵f(x)=1-$\frac{2}{{x}^{2}+1}$得,
f($\frac{1}{x}$)=1-$\frac{2}{{(\frac{1}{x})}^{2}+1}$=1-$\frac{{2x}^{2}}{1{+x}^{2}}$,
∴兩式兩邊分別相加得,f(x)+f($\frac{1}{x}$)=0,
∴f(3)+f(4)+…+f(2 016)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{2016}$)=0×2014=0.

點評 本題考查了函數(shù)的性質(zhì)的判斷及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標系中,以坐標原點O為極點,以x軸的正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為ρ=8cosθ+10sinθ.
(1)求曲線C的直角坐標方程及參數(shù)方程;
(2)若點P(x,y)為曲線C上任意一點,求證:x+y的最大值大于18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)復(fù)數(shù) Z1,Z2 在復(fù)平面內(nèi)對應(yīng)的點關(guān)于虛軸對稱,Z1=2+i,則 Z2=( 。
A.2-iB.-2-iC.-2+iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(cosθ,sinθ),向量$\overrightarrow$=(1,-$\sqrt{3}$),則|$\overrightarrow{a}$-$\overrightarrow$|的最大值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,O(0,0),D(0,2),線段OD的中點為橢圓C的一個頂點,郭點D且斜率為k的直線l交橢圓C于A,B兩點.
(1)設(shè)線段AB的中點為G,求直線OG的斜率與k的乘積;
(2)若OA⊥OB,且A、B在x軸上的射影分別為A′、B′,求|AA′|•|BB′|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一個幾何體的三視圖如圖所示,則這個幾何體的體積為(  )
A.2+πB.2+3πC.3+$\frac{π}{2}$D.3+3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x+sinπx,則f(${\frac{1}{2017}}$)+f(${\frac{2}{2017}}$)+f(${\frac{3}{2017}}$)+…+f(${\frac{4033}{2017}}$)的值為4033.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若拋物線y2=2px(p>0)的焦點為F,其準線與x軸的交點為C,過點F的直線與拋物線相交于A、B兩點,若|AF|=3,|BF|=1,則AC的長度為( 。
A.$\sqrt{19}$B.2$\sqrt{5}$C.$\frac{3}{2}$$\sqrt{7}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則|$\overrightarrow{a}$•$\overrightarrow$|=( 。
A.2B.$\sqrt{2}$C.1D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案