6.設(shè)復(fù)數(shù) Z1,Z2 在復(fù)平面內(nèi)對應(yīng)的點關(guān)于虛軸對稱,Z1=2+i,則 Z2=( 。
A.2-iB.-2-iC.-2+iD.1+2i

分析 由Z1得到Z1在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo),結(jié)合題意求得Z2在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo),則答案可求.

解答 解:∵Z1=2+i,∴Z1在復(fù)平面內(nèi)對應(yīng)點的坐標(biāo)為(2,1),
由復(fù)數(shù)Z1,Z2在復(fù)平面內(nèi)對應(yīng)的點關(guān)于虛軸對稱,可知Z2在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為(-2,1),
∴Z2=-2+i,
故選:C.

點評 本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,C2的極坐標(biāo)方程ρ2-2ρcosθ-3=0.
(1)求C1的普通方程;C2的直角坐標(biāo)方程;
(2)C1與C2有兩個公共點A、B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,已知X~N(0,52),則P(5<X≤10)=(  )
A.0.4077B.0.2718C.0.1359D.0.0453

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上的一點A(2,4).
(Ⅰ)是否存在直線l:y=kx+3與圓M有兩個交點B,C,并且|AB|=|AC|,若有,求此直線方程,若沒有,請說明理由;
(Ⅱ)設(shè)點T(t,0)滿足:存在圓M上的兩點P和Q,使得$\overrightarrow{TA}$$+\overrightarrow{TP}$=$\overrightarrow{TQ}$,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.五一假期間,小明參加由某電視臺推出的大型戶外競技類活動,該活動共有四關(guān),若四關(guān)都闖過,則闖關(guān)成功,否則落水失敗,小明闖過一至四關(guān)的概率依次是$\frac{7}{8}$,$\frac{5}{7}$,$\frac{2}{3}$,$\frac{3}{10}$,則小明闖關(guān)失敗的概率為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,若AC=2$\sqrt{3}$,BC=2,AB=2,則∠C=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.二項式(ax-$\frac{1}{3\root{3}{x}}$)9,的展開式中x的系數(shù)為84,則a=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若函數(shù)f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$.
(1)求$\frac{f(2)}{f(\frac{1}{2})}$的值.
(2)求f(3)+f(4)+…+f(2015)+f(2016)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{2015}$)+f($\frac{1}{2016}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示將若干個點擺成三角形圖案,每條邊(包括兩個端點)有n(n>1,n∈N*)個點,相應(yīng)的圖案中總的點數(shù)記為an,則$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2016}{a}_{2017}}$=( 。
A.$\frac{2016}{2017}$B.$\frac{2017}{2016}$C.$\frac{2015}{2016}$D.$\frac{2016}{2015}$

查看答案和解析>>

同步練習(xí)冊答案