9.一個幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A.2+πB.2+3πC.3+$\frac{π}{2}$D.3+3π

分析 由已知三視圖畫出直觀圖,根據(jù)圖中數(shù)據(jù)計算體積.

解答 解:由三視圖得到幾何體如圖:所以體積為$\frac{1}{2}×\frac{1}{3}×π×{1}^{2}×3+\frac{1}{2}×2×3×1$=$\frac{π}{2}+3$;
故選:C.

點評 本題考查了由三視圖求幾何體的體積;關(guān)鍵是由三視圖正確畫出直觀圖.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四面體ABCD中,△ABC是邊長為2的正三角形,AD=CD=$\sqrt{2}$,E為BD上一點.
(Ⅰ)證明:平面ACD⊥平面ABC;
(Ⅱ)若二面角D-AE-C的所成角的平面角的余弦值為$\frac{4}{7}$,求BE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在△ABC中,若AC=2$\sqrt{3}$,BC=2,AB=2,則∠C=( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.遠古時代,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩計數(shù)”,如圖所示的是一位母親記錄的孩子自出生后的天數(shù),在從右向左依次排列的不同繩子上打結(jié),滿七進一,根據(jù)圖示可知,孩子已經(jīng)出生的天數(shù)是( 。
A.510B.2178C.3570D.15246

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.若函數(shù)f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$.
(1)求$\frac{f(2)}{f(\frac{1}{2})}$的值.
(2)求f(3)+f(4)+…+f(2015)+f(2016)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{2015}$)+f($\frac{1}{2016}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.有同學發(fā)現(xiàn)“任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心;且“拐點”就是對稱中心.”請你根據(jù)這一發(fā)現(xiàn),請回答問題:
若函數(shù)g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{x+n}{2x-1}$(n∈R且n$≠-\frac{1}{2}$),則g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+g($\frac{4}{2017}$)+…+g($\frac{2016}{2017}$)=3024.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.園林管理處擬在公園某區(qū)域規(guī)劃建設(shè)一半徑為r米圓心角為θ(弧度)的扇形景觀水池,其中O為扇形AOB的圓心,同時緊貼水池周邊建一圈理想的無寬度步道,要求總預(yù)算費用不超過24萬元,水池造價為每平方米400元,步道造價為每米1000元.
(1)當r和θ分別為多少時,可使廣場面積最大,并求出最大值;
(2)若要求步道長為105米,則可設(shè)計出水池最大面積是多少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,樹頂A離地面4.8 m,樹上另一點B離地面2.4m,在離地面1.6m的C處看此樹,離此樹多少m時看A,B的視角最大( 。
A.2.2B.2C.1.8D.1.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某單位為了了解用電量y度與氣溫x℃之間的關(guān)系,隨機統(tǒng)計了某4天的用電量與當天氣溫,并制作了對照表
氣溫(℃)2016128
用電量(度)14284462
由表中數(shù)據(jù)得回歸直線方程$\widehat{y}$=bx+a中b=-4,預(yù)測當氣溫為4℃時,用電量的度數(shù)是(  )
A.62B.64C.76D.77

查看答案和解析>>

同步練習冊答案