12.設(shè)函數(shù)f(x)=$\frac{{3{x^2}+ax}}{e^x}$(a∈R)
(Ⅰ)若f(x)在x=0處取得極值,確定a的值,并求此時(shí)曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若f(x)在[3,+∞)上為減函數(shù),求a的取值范圍.

分析 (I)f′(x)=$\frac{-3{x}^{2}+(6-a)x+a}{{e}^{x}}$,由f(x)在x=0處取得極值,可得f′(0)=0,解得a.可得f(1),f′(1),即可得出曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(II)解法一:由(I)可得:f′(x)=$\frac{-3{x}^{2}+(6-a)x+a}{{e}^{x}}$,令g(x)=-3x2+(6-a)x+a,由g(x)=0,解得x1=$\frac{6-a-\sqrt{{a}^{2}+36}}{6}$,x2=$\frac{6-a+\sqrt{{a}^{2}+36}}{6}$.對(duì)x分類討論:當(dāng)x<x1時(shí);當(dāng)x1<x<x2時(shí);當(dāng)x>x2時(shí).由f(x)在[3,+∞)上為減函數(shù),可知:x2=$\frac{6-a+\sqrt{{a}^{2}+36}}{6}$≤3,解得即可.
解法二:“分離參數(shù)法”:由f(x)在[3,+∞)上為減函數(shù),可得f′(x)≤0,可得a≥$\frac{-3{x}^{2}+6x}{x-1}$,在[3,+∞)上恒成立.令u(x)=$\frac{-3{x}^{2}+6x}{x-1}$,利用導(dǎo)數(shù)研究其最大值即可.

解答 解:(I)f′(x)=$\frac{(6x+a){e}^{x}-(3{x}^{2}+ax){e}^{x}}{({e}^{x})^{2}}$=$\frac{-3{x}^{2}+(6-a)x+a}{{e}^{x}}$,
∵f(x)在x=0處取得極值,∴f′(0)=0,解得a=0.
當(dāng)a=0時(shí),f(x)=$\frac{3{x}^{2}}{{e}^{x}}$,f′(x)=$\frac{-3{x}^{2}+6x}{{e}^{x}}$,
∴f(1)=$\frac{3}{e}$,f′(1)=$\frac{3}{e}$,
∴曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為$y-\frac{3}{e}=\frac{3}{e}(x-1)$,化為:3x-ey=0;
(II)解法一:由(I)可得:f′(x)=$\frac{-3{x}^{2}+(6-a)x+a}{{e}^{x}}$,令g(x)=-3x2+(6-a)x+a,
由g(x)=0,解得x1=$\frac{6-a-\sqrt{{a}^{2}+36}}{6}$,x2=$\frac{6-a+\sqrt{{a}^{2}+36}}{6}$.
當(dāng)x<x1時(shí),g(x)<0,即f′(x)<0,此時(shí)函數(shù)f(x)為減函數(shù);
當(dāng)x1<x<x2時(shí),g(x)>0,即f′(x)>0,此時(shí)函數(shù)f(x)為增函數(shù);
當(dāng)x>x2時(shí),g(x)<0,即f′(x)<0,此時(shí)函數(shù)f(x)為減函數(shù).
由f(x)在[3,+∞)上為減函數(shù),可知:x2=$\frac{6-a+\sqrt{{a}^{2}+36}}{6}$≤3,解得a≥-$\frac{9}{2}$.
因此a的取值范圍為:$[-\frac{9}{2},+∞)$.
解法二:由f(x)在[3,+∞)上為減函數(shù),∴f′(x)≤0,
可得a≥$\frac{-3{x}^{2}+6x}{x-1}$,在[3,+∞)上恒成立.
令u(x)=$\frac{-3{x}^{2}+6x}{x-1}$,u′(x)=$\frac{-3[(x-1)^{2}+1]}{(x-1)^{2}}$<0,
∴u(x)在[3,+∞)上單調(diào)遞減,
∴a≥u(3)=-$\frac{9}{2}$.
因此a的取值范圍為:$[-\frac{9}{2},+∞)$.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則、利用導(dǎo)數(shù)的幾何意義研究切線方程、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值,考查了分類討論思想方法、“分離參數(shù)法”、推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.
求證:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.a(chǎn)為實(shí)數(shù),函數(shù)f(x)=|x2-ax|在區(qū)間[0,1]上的最大值記為g(a).當(dāng)a=2$\sqrt{2}$-2時(shí),g(a)的值最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,若輸出k的值為8,則判斷框圖可填入的條件是(  )
A.s≤$\frac{3}{4}$B.s≤$\frac{5}{6}$C.s≤$\frac{11}{12}$D.s≤$\frac{25}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+t}\\{y=1+t}\end{array}}$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為${ρ^2}cos2θ=4(ρ>0,\frac{3π}{4}<θ<\frac{5π}{4})$,則直線l與曲線C的交點(diǎn)的極坐標(biāo)為(2,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=log2(x2+2x-3)的定義域是( 。
A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.復(fù)數(shù)(1+2i)i的實(shí)部為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知sinα+2cosα=0,則2sinαcosα-cos2α的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若雙曲線E:$\frac{x^2}{9}-\frac{y^2}{16}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線E上,且|PF1|=3,則|PF2|等于( 。
A.11B.9C.5D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案