9.10×9×8×…×4可表示為(  )
A.A${\;}_{10}^{6}$B.A${\;}_{10}^{7}$C.C${\;}_{10}^{6}$D.C${\;}_{10}^{7}$

分析 把給出的式子變形,然后結(jié)合排列數(shù)公式得答案.

解答 解:10×9×8×…×4=$\frac{1×2×3×4…×10}{1×2×3}$=$\frac{10!}{3!}$=${A}_{10}^{7}$,
故選:B.

點評 本題考查了排列及排列數(shù)公式,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)F1和F2是雙曲線$\frac{{x}^{2}}{4}$-y2=1的兩個焦點,點P在雙曲線右支上,且滿足∠F1PF2=90°,求△F1PF2的面積為S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從3雙不同的鞋中任取2只,則取出的2只鞋不能成雙的概率為(  )
A.$\frac{3}{5}$B.$\frac{8}{15}$C.$\frac{4}{5}$D.$\frac{7}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列各組向量中能作為表示它們所在平面內(nèi)的所有向量的基底的是( 。
A.$\overrightarrow{a}$=(0,0),$\overrightarrow$=(1,-2)B.$\overrightarrow{a}$=(3,2),$\overrightarrow$=(6,4)C.$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(5,7)D.$\overrightarrow{a}$=(-3,-1),$\overrightarrow$=(3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.運行如圖所示的程序框圖,則輸出的S的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對(1+x)n=1+C${\;}_{n}^{1}$x+C${\;}_{n}^{2}$x2+C${\;}_{n}^{3}$x3+…+C${\;}_{n}^{n}$xn兩邊求導(dǎo),可得n(1+x)n-1=C${\;}_{n}^{1}$+2C${\;}_{n}^{2}$x+3C${\;}_{n}^{3}$x2+…+nC${\;}_{n}^{n}$xn-1.通過類比推理,有(3x-2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,可得a1+2a2+3a3+4a4+5a5+6a6=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.甲、乙兩人進(jìn)行射擊比賽,他們擊中目標(biāo)的概率分別為$\frac{3}{4}$和$\frac{2}{3}$(兩人是否擊中目標(biāo)相互獨立),若兩人各射擊2次,則兩人擊中目標(biāo)的次數(shù)相等的概率為( 。
A.$\frac{1}{6}$B.$\frac{25}{144}$C.$\frac{5}{12}$D.$\frac{61}{144}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)i是虛數(shù)單位,a∈R,若i(ai+2)是一個純虛數(shù),則實數(shù)a的值為(  )
A.-$\frac{1}{2}$B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若隨機(jī)變量X的分布列為P(X=i)=$\frac{i}{10}$(i=1,2,3,4),則P(X>2)=0.7.

查看答案和解析>>

同步練習(xí)冊答案