6.如圖,在直三棱柱ABC-A1B1C1中,AB=BC=CC1=2,AC=2$\sqrt{3}$,M是AC的中點(diǎn),則異面直線CB1與C1M所成角的余弦值為$\frac{\sqrt{14}}{28}$.

分析 以M為原點(diǎn),MA為x軸,MB為y軸,過M作AC的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線CB1與C1M所成角的余弦值.

解答 解:在直三棱柱ABC-A1B1C1中,AB=BC=CC1=2,AC=2$\sqrt{3}$,M是AC的中點(diǎn),
∴BM⊥AC,BM=$\sqrt{4-3}$=1,
以M為原點(diǎn),MA為x軸,MB為y軸,過M作AC的垂線為z軸,建立空間直角坐標(biāo)系,
C(-$\sqrt{3}$,0,0),B1(0,1,2),C1(-$\sqrt{3}$,0,2),M(0,0,0),
$\overrightarrow{C{B}_{1}}$=($\sqrt{3},1,2$),$\overrightarrow{M{C}_{1}}$=(-$\sqrt{3}$,0,2),
設(shè)異面直線CB1與C1M所成角為θ,
則cosθ=$\frac{|\overrightarrow{C{B}_{1}}•\overrightarrow{M{C}_{1}}|}{|\overrightarrow{C{B}_{1}}|•|\overrightarrow{M{C}_{1}}|}$=$\frac{1}{\sqrt{8}•\sqrt{7}}$=$\frac{\sqrt{14}}{28}$.
∴異面直線CB1與C1M所成角的余弦值為$\frac{\sqrt{14}}{28}$.
故答案為:$\frac{\sqrt{14}}{28}$.

點(diǎn)評(píng) 本題考查異面直線所成角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)y=f(x)的圖象與y=2x+a的圖象關(guān)于y=-x+1對(duì)稱,且f(-3)+f(-7)=1,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合U=R,函數(shù)$y=\sqrt{1-x}$的定義域?yàn)镸,集合N={x|x2-x≤0},則下列結(jié)論正確的是(  )
A.M∩N=NB.M∩(∁N)=∅C.M∪N=UD.M⊆(∁N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直線a?平面α,直線b?平面β,α⊥β,則“a⊥b”是“a⊥β”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.f(x)=x2+ax+b與坐標(biāo)軸有三個(gè)交點(diǎn)A,B,C,且△ABC外心在y=x上,則a+b=( 。
A.1B.-1C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知△ABC的外接圓的圓心為點(diǎn)O,半徑為l,若$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,且|$\overrightarrow{AO}$|=|$\overrightarrow{AC}$|,則$\overrightarrow{BA}•\overrightarrow{BC}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=2sin(ωx+φ)(ω>0,$\frac{π}{2}$≤φ≤π)的部分圖象如圖所示,其中A,B兩點(diǎn)之間的距離為5,則ω=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)為偶函數(shù),當(dāng)x<0時(shí),f(x)=sinx+cosx,則f($\frac{π}{4}$)=( 。
A.0B.$\sqrt{2}$C.-$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等差數(shù)列1,a,b,又4,a+2,b+1為等比數(shù)列,求該等差數(shù)列的公差( 。
A.-1B.0C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案