5.?dāng)?shù)學(xué)上稱函數(shù)y=kx+b(k,b∈R,k≠0)為線性函數(shù).對于非線性可導(dǎo)函數(shù)f(x),在點(diǎn)x0附近一點(diǎn)x的函數(shù)值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x-x0).利用這一方法,$m=\sqrt{4.001}$的近似代替值(  )
A.大于mB.小于m
C.等于mD.與m的大小關(guān)系無法確定

分析 令f(x)=$\sqrt{x}$,根據(jù)定義計(jì)算近似值比較大小即可.

解答 解:根據(jù)題意,令f(x)=$\sqrt{x}$,則f′(x)=$\frac{1}{2\sqrt{x}}$>0,
取4.001附近的點(diǎn)x0=4,則有m的近似代替值為f(4)+$\frac{1}{2\sqrt{4}}$(4.001-4)=2+$\frac{0.001}{4}$,
∵(2+$\frac{0.001}{4}$)2=4+0.001+($\frac{0.001}{4}$)2>4.001=m2,
∴2+$\frac{0.001}{4}$>m.
故選A.

點(diǎn)評 本題考查導(dǎo)數(shù)的計(jì)算,關(guān)鍵是分析題意,理解“近似代替值”的意義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|log2x>2},$B=\{x|{(\frac{1}{2})^x}≥\frac{1}{16}\}$,則下列結(jié)論成立的是( 。
A.A∩B=AB.(∁RA)∩B=AC.A∩(∁RB)=AD.(∁RA)∩(∁RB)=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y-1≤0}\\{2x-y-3≥0}\end{array}\right.$若目標(biāo)函數(shù)z=ax+2by(a>0,b>0),在該約束條件下的最小值為2,則$\frac{1}{a}$+$\frac{4}$的最小值為( 。
A.7B.8C.9D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.三世紀(jì)中期,魏晉時(shí)期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù),為計(jì)算圓周率建立了嚴(yán)密的理論和完善的算法,所謂割圓術(shù),就是用圓內(nèi)接正多邊形的面積去無限逼近圓面積并以此求取圓周率的方法.按照這樣的思路,劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和 3.1416這兩個(gè)近似數(shù)值.如圖所示是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,若輸出的n=24,則p的值可以是(參考數(shù)據(jù):$\sqrt{3}$=1.732,sin15°≈0.2588,sin7.5°≈0.1305,sin3.75°≈0.0654)( 。
A.2.6B.3C.3.1D.3.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)全集U=R,集合M={x|x>1},p={x|x2>1},則下列關(guān)系中正確的是( 。
A.M=PB.P?MC.M?PD.(∁UM)∩P=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,(a>0,b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,過右焦點(diǎn)F2的直線交雙曲線于A,B兩點(diǎn),連接AF1,BF1.若|AB|=|BF1|,且∠ABF1=90°,則雙曲線的離心率為$\sqrt{5-2\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一段長為36m的籬笆圍成一個(gè)矩形菜園,求這個(gè)矩形菜園的最大面積( 。
A.79B.80C.81D.82

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$sin(x+\frac{π}{3})=\frac{{\sqrt{3}}}{3}$則$sin(\frac{2π}{3}-x)$的值為$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.過定點(diǎn)M的直線:kx-y+1-2k=0與圓:(x+1)2+(y-5)2=9相切于點(diǎn)N,則|MN|=4.

查看答案和解析>>

同步練習(xí)冊答案