A. | $\frac{2016}{2017}$ | B. | $\frac{1}{2017}$ | C. | $\frac{2015}{2016}$ | D. | $\frac{2017}{2018}$ |
分析 設(shè)Sn=a1+a2+…+an,由題意可得:$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n+1}$,可得Sn=2n2+n.利用遞推關(guān)系可得an.可得${b_n}=\frac{{{a_n}+1}}{4}$,利用“裂項求和”方法即可得出.
解答 解:設(shè)Sn=a1+a2+…+an,
由題意可得:$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n+1}$,可得Sn=2n2+n.
∴n=1時,a1=S1=3;n≥2時,an=Sn-Sn-1=2n2+n-[2(n-1)2+(n-1)]=4n-1.n=1時也成立.
∴an=4n-1.
∴${b_n}=\frac{{{a_n}+1}}{4}$=n,∴$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
則$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_{2016}}{b_{2017}}}}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2016}-\frac{1}{2017})$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$.
故選:A.
點評 本題考查了等差數(shù)列的通項公式與求和公式、數(shù)列遞推關(guān)系、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“?x∈R,x2-2x+1<0”的否定是“?x∈R,x2-2x+1≥0” | |
B. | 命題“若m>0,則方程x2+x-m=0有實根”的逆命題為真命題 | |
C. | 命題“若a>b,則ac2>bc2”的否命題為真命題 | |
D. | 若命題“¬p∨q”為假命題,則“p∧¬q”為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{5}{8}$ | C. | $\frac{5}{16}$ | D. | $\frac{5}{32}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com