6.為了調(diào)查高一新生中女生的體重情況,校衛(wèi)生室隨機(jī)選取20名女生作為樣本測(cè)量她們的體重(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間(40,45],(45,50],(50,55],(55,60]進(jìn)行分組,得到頻率分布直方圖如圖所示.已知樣本中體重在區(qū)間(45,50]上的女生數(shù)與體重在區(qū)間(55,60]上的女生數(shù)之比為4:3.
(Ⅰ)求a,b的值;
(Ⅱ)從樣本中體重在區(qū)間(50,60]上的女生中隨機(jī)抽取兩人,求體重在區(qū)間(55,60]上的女生至少有一人被抽中的概率.

分析 (Ⅰ)根據(jù)頻率的求法及所有小組的頻率和為1,構(gòu)造關(guān)于a,b的方程組,解之即得a,b的值;
(Ⅱ)根據(jù)概率的求法,計(jì)算可得答案,分別求出包含基本事件及從(50,60]中任意抽取2個(gè)個(gè)體基本事件總數(shù),最后求出它們的比值即可.

解答 解:(Ⅰ)樣本中體重在區(qū)間(45,50]上的女生有a×5×20=100a(人),…(1分)
樣本中體重在區(qū)間(50,60]上的女生有(b+0.02)×5×20=100(b+0.02)(人),…(2分)
依題意,有100a=$\frac{4}{3}$×100(b+0.02),即a=$\frac{4}{3}$×(b+0.02).①…(3分)
根據(jù)頻率分布直方圖可知(0.02+b+0.06+a)×5=1,②…(4分)
解①②得:a=0.08,b=0.04…(6分)
(Ⅱ)樣本中體重在區(qū)間(50,55]上的女生有0.04×5×20=4人,分別記為
A1,A2,A3,A4,…(7分)
體重在區(qū)間(55,60]上的女生有0.02×5×20=2人,分別記為B1,B2…(8分)
從這6名女生中隨機(jī)抽取兩人共有15種情況:
(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),
(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2)…(10分)
其中體重在(55,60]上的女生至少有一人共有9種情況:
(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),
(B1,B2)…(11分)
記“從樣本中體重在區(qū)間(50,60]上的女生隨機(jī)抽取兩人,體重在區(qū)間(55,60]上的女生
至少有一人被抽中”為事件M,則P(M)=$\frac{9}{15}=\frac{3}{5}$…(12分)

點(diǎn)評(píng) 本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力.利用統(tǒng)計(jì)圖獲取信息時(shí),必須認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖是y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在區(qū)間[-$\frac{π}{6}$,$\frac{5π}{6}$]上的圖象為了得到y(tǒng)=sin2x的圖象,只需要將此圖象(  )
A.向左平移$\frac{π}{3}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{e}{x}$-lnx,g(x)=ex-1+a-lnx,其中e=2.71828…,a∈R.
(1)求f(x)的零點(diǎn);
(2)求g(x)的極值;
(3)如果s,t,r滿足|s-r|<|t-r|,那么稱s比t更靠近r.當(dāng)a≥2且x≥1時(shí),試比較$\frac{e}{x}$和ex-1+a哪個(gè)更靠近lnx,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如果雙曲線x2-y2=a2經(jīng)過(guò)圓(x-3)2+(y-1)2=5的直徑AB的兩個(gè)端點(diǎn),則正實(shí)數(shù)a的值等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=sin(-2x)的一個(gè)遞增區(qū)間是( 。
A.$(0,\frac{π}{4})$B.$(-π,-\frac{π}{2})$C.$(\frac{3π}{4},2π)$D.$(-\frac{π}{2},-\frac{π}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)α是空間中的一個(gè)平面,l,m,n是三條不同的直線,則有下列命題:
①若m?α,n?α,l⊥m,l⊥n,則l⊥α;
②若l∥m,m∥n,l⊥α,則n⊥α;
③若l∥m,m⊥α,n⊥α,則l∥n;
④若m?α,n⊥α,l⊥n,則l∥m.
則上述命題中正確的是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.三棱錐P-ABC中,已知∠APC=∠BPC=∠APB=$\frac{π}{3}$,點(diǎn)M是△ABC的重心,且$\overrightarrow{PA}$•$\overrightarrow{PB}$+$\overrightarrow{PB}$$•\overrightarrow{PC}$+$\overrightarrow{PC}$$•\overrightarrow{PA}$=9,則|$\overrightarrow{PM}$|的最小值為( 。
A.2$\sqrt{2}$B.$\sqrt{6}$C.$\frac{4\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y≥1\\ x+y≥1\\ 2x-y≤4\end{array}\right.$,則z=x+2y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若變量x,y滿足$\left\{\begin{array}{l}2x-y+2≤0\\ x+2y-4≥0\\ x-3y+11≥0\end{array}\right.$,則z=2x+y的取值范圍是[-1,6].

查看答案和解析>>

同步練習(xí)冊(cè)答案