5.如圖,三棱柱ABC-A1B1C1的側面ABB1A1為正方形,側面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(Ⅰ)求證:平面ABB1A1⊥BB1C1C;
(Ⅱ)若AB=2,求三棱柱ABC-A1B1C1體積.

分析 (I)證AB垂直于平面內的兩條相交直線,再由線面垂直⇒面面垂直;
(II)先求得三棱錐B1-ABC的體積,再利用棱柱是由三個體積相等的三棱錐組合而成來求解.

解答 (Ⅰ)證明:由側面ABB1A1為正方形,知AB⊥BB1
又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,
又AB?平面ABB1A1,所以平面ABB1A1⊥BB1C1C.…(4分)
(Ⅱ)解:設O是BB1的中點,連結CO,則CO⊥BB1
由(Ⅰ)知,CO⊥平面ABB1A1,且CO=$\frac{\sqrt{3}}{2}$BC=$\frac{\sqrt{3}}{2}$AB=$\sqrt{3}$.
連結AB1,
則${V}_{C-AB{B}_{1}}$=$\frac{1}{3}$${S}_{△AB{B}_{1}}$•CO=$\frac{1}{6}$AB2•CO=$\frac{2\sqrt{3}}{3}$.…(8分)
因${V}_{{B}_{1}-ABC}$=${V}_{C-AB{B}_{1}}$=$\frac{1}{3}$${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$=$\frac{2\sqrt{3}}{3}$,
故三棱柱ABC-A1B1C1的體積${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$=2$\sqrt{3}$.…(12分).

點評 本題考查面面垂直的判定及空間幾何體的體積,考查學生分析解決問題的能力,正確運用線面垂直的判定是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的點到它的兩個焦點的距離之和為4,以橢圓C的短軸為直徑的圓O經過這兩個焦點,點A,B分別是橢圓C的左、右頂點.
(Ⅰ)求圓O和橢圓C的方程;
(Ⅱ)已知P,Q分別是橢圓C和圓O上的動點(P,Q位于y軸兩側),且直線PQ與x軸平行,直線AP,BP分別與y軸交于點M,N.求證:∠MQN為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點為B(0,1),過焦點且垂直于長軸的弦長為$\sqrt{2}$,直線l交橢圓C1于M,N兩點.
(Ⅰ) 求橢圓C1的方程;
(Ⅱ)若△BMN的重心恰好為橢圓的右焦點F,求直線l的方程;
(Ⅲ)直線l與橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=λ(λ∈R,λ>1)交于P,Q兩點(如圖),求證|PM|=|NQ|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=cos(2x+$\frac{π}{3}$)+sin2x.
(1)求函數(shù)f(x)的最小周期;
(2)求函數(shù)f(x)的最大值,并求此時x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知動圓C過定點(1,0)且與直線x=-1相切
(1)求動圓圓心C的軌跡方程;
(2)設過定點M (-4,0)的直線?與圓心C的軌跡有兩個交點A,B,坐標原點為O,設∠xOA=α,∠xOB=β,試探究α+β是否為定值,若是定值,求定值,若不是定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設M,?>0,|x-a|<$\frac{?}{2}$,|y-b|<$\frac{?}{2}$,|a|≤M,|y|≤M,求證:|xy-ab|<M?.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點F2是拋物線y2=4x的焦點,過點F2垂直于x軸的直線被橢圓C所截得的線段長度為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設動直線l:y=kx+m與橢圓C有且只有一個公共點 P,且與直線x=2相交于點Q.請問:在x軸上是否存在定點 M,使得$\overrightarrow{{M}{P}}•\overrightarrow{{M}Q}$為定值?若存在,求出點 M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{2}$+y2=1,F(xiàn)2是C的右焦點,直線l:y=kx+m與C交于A(x1,y1),B(x2,y2)兩點,求證:當直線F2A與直線F2B的傾斜角互補時,直線l必過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,四個頂點所圍成的菱形的面積為8$\sqrt{2}$.
(1)求橢圓的方程;
(2)已知直線y=kx+m與橢圓C交于兩個不同的點A(x1,y1)和點B(x2,y2),O為坐標原點,且kOA•kOB=-$\frac{1}{2}$,求y1y2的取值范圍.

查看答案和解析>>

同步練習冊答案