2.曲線y=e-x在點(diǎn)(x0,$\frac{1}{e}$)處的切線與坐標(biāo)軸圍成的三角形的面積為$\frac{2}{e}$.

分析 求出函數(shù)的導(dǎo)數(shù),可得切線的斜率,可得切線的方程,求得x,y軸的截距,運(yùn)用三角形的面積公式,計(jì)算即可得到所求值.

解答 解:由題意可得e${\;}^{-{x}_{0}}$=$\frac{1}{e}$,解得x0=1,
y=e-x的導(dǎo)數(shù)為y′=-e-x,
可得在點(diǎn)(1,$\frac{1}{e}$)處的切線斜率為-e-1=-$\frac{1}{e}$,
即有切線的方程為y-$\frac{1}{e}$=-$\frac{1}{e}$(x-1).
令x=0,可得y軸上的截距為$\frac{2}{e}$;
y=0可得x軸上的截距為2.
即有圍成的三角形的面積為$\frac{1}{2}$×2×$\frac{2}{e}$=$\frac{2}{e}$.
故答案為:$\frac{2}{e}$.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,以及直線方程的運(yùn)用,正確求導(dǎo)是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,AB是圓O的直徑,點(diǎn)C在圓O上,延長(zhǎng)BC到D使BC=CD,過C作圓O的切線交AD于E.若AB=6,ED=2.
(1)求證:CE⊥AD;
(2)求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.“開門大吉”是某電視臺(tái)推出的游戲節(jié)目.選手面對(duì)1~8號(hào)8扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢(mèng)想基金.在一次場(chǎng)外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個(gè)年齡段:20~30;30~40(單位:歲),其猜對(duì)歌曲名稱與否的人數(shù)如圖所示.
(1)寫出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對(duì)歌曲名稱是否與年齡有關(guān);說明你的理由;(下面的臨界值表供參考)
 
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)現(xiàn)計(jì)劃在這次場(chǎng)外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并抽取2名幸運(yùn)選手,求2名幸運(yùn)選手中在20~30歲之間的人數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若2a+2b=1,ab>0,則$\frac{1}{a}$+$\frac{1}$的最小值是( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求y=(log${\;}_{\frac{1}{2}}$x)2-2log${\;}_{\frac{1}{2}}$x的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題:若數(shù)列{an}為等差數(shù)列,且am=k,an=l(m≠n,m,n∈N+),則am+n=$\frac{ln-km}{n-m}$,現(xiàn)已知等比數(shù)列{bn}(bn>0,n∈N+),bm=a,bn=b(m≠n,m,n∈N+)若類比上述結(jié)論,則可得到bm+n( 。
A.$\root{n-m}{\frac{^{n}}{{a}^{m}}}$B.$\frac{^{n}-{a}^{m}}{n-m}$C.$\root{n-m}{^{n}-{a}^{m}}$D.$\frac{\frac{^{n}}{{a}^{m}}}{n-m}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=lg(-x2+2x+15)的定義域?yàn)椋ā 。?table class="qanwser">A.(-5,3)B.(-3,5)C.(-∞,-3)∪(5,+∞)D.(-∞,-5)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+$\frac{2{a}^{3}}{x}$+1.
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線y=1平行,求a的值;
(Ⅱ)若0<a<2,求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.BD是等腰直角三角形△ABC腰AC上的中線,AM⊥BD于點(diǎn)M,延長(zhǎng)AM交BC于點(diǎn)N,AF⊥BC于點(diǎn)F,AF與BD交于點(diǎn)E.
(1)求證;△ABE≌△ACN;
(2)求證:∠ADB=∠CDN.

查看答案和解析>>

同步練習(xí)冊(cè)答案