7.已知命題:若數(shù)列{an}為等差數(shù)列,且am=k,an=l(m≠n,m,n∈N+),則am+n=$\frac{ln-km}{n-m}$,現(xiàn)已知等比數(shù)列{bn}(bn>0,n∈N+),bm=a,bn=b(m≠n,m,n∈N+)若類比上述結(jié)論,則可得到bm+n(  )
A.$\root{n-m}{\frac{^{n}}{{a}^{m}}}$B.$\frac{^{n}-{a}^{m}}{n-m}$C.$\root{n-m}{^{n}-{a}^{m}}$D.$\frac{\frac{^{n}}{{a}^{m}}}{n-m}$

分析 首先根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì)進行類比,等差數(shù)列中的bn-am可以類比等比數(shù)列中的$\frac{^{n}}{{a}^{m}}$,等差數(shù)列中的$\frac{ln-km}{n-m}$,可以類比等比數(shù)列中的$\root{n-m}{\frac{^{n}}{{a}^{m}}}$,很快就能得到答案.

解答 解:等差數(shù)列中的bn和am可以類比等比數(shù)列中的bn和am,
等差數(shù)列中的bn-am可以類比等比數(shù)列中的$\frac{^{n}}{{a}^{m}}$,
等差數(shù)列中的$\frac{ln-km}{n-m}$,可以類比等比數(shù)列中的$\root{n-m}{\frac{^{n}}{{a}^{m}}}$.
故bm+n=$\root{n-m}{\frac{^{n}}{{a}^{m}}}$,
故選:A.

點評 本題主要考查類比推理的知識點,解答本題的關(guān)鍵是熟練掌握等差數(shù)列和等比數(shù)列的性質(zhì),根據(jù)等差數(shù)列的所得到的結(jié)論,推導(dǎo)出等比數(shù)列的結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={y|y=x2-1},B={x|y=$\sqrt{x-1}$},則A∩B為(  )
A.B.[1,+∞)C.[-1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某同學(xué)去年寒假期間對其30位親友的飲食習(xí)慣作了一次調(diào)查,其中12位五十歲以下的親友中有4位偏愛蔬菜:18位五十歲以上的親友中有2位偏愛肉類.
(1)完成如下的2×2列聯(lián)表:
偏愛蔬菜偏受肉類合計
五十歲以下
五十歲以上
合計
(2)有多大的把握認(rèn)為“其親友的飲食習(xí)慣與年齡有關(guān)”?
(3)若要從這30位親友中抽出5人進行有關(guān)飲食習(xí)慣方面的進一步調(diào)查,該如何合量地進行抽樣?
附計算公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
附表:
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,∠C=$\frac{π}{2}$,∠B=$\frac{π}{6}$,AC=2,M為AB中點,將△ACM沿CM折起,使A,B之間的距離為2$\sqrt{2}$,則三棱錐M-ABC的外接球的表面積為( 。
A.12πB.16πC.20πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.曲線y=e-x在點(x0,$\frac{1}{e}$)處的切線與坐標(biāo)軸圍成的三角形的面積為$\frac{2}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點P(2,2)在曲線y=ax2+bx上,如果該曲線在點P處切線的斜率為9,那么ab=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x) 在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(1,f(1))處的切線方程是( 。
A.y=-2x+3B.y=2x-1C.y=-6x+7D.y=3x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是(  )
A.y=x3B.y=ln|x|C.y=sin($\frac{π}{2}$-x)D.y=-x2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為$\frac{π}{2}$.
(1)求f($\frac{π}{4}$-α)=$\frac{3\sqrt{7}}{4}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求sinα的值;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個單位長度后,再將得到的圖象上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在[-π,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案