分析 求出導函數(shù),根據(jù)函數(shù)在區(qū)間(-∞,+∞)內(nèi)既有極大值,又有極小值,導函數(shù)為0的方程有不等的實數(shù)根,可求實數(shù)a的取值范圍.
解答 解:函數(shù)f(x)=ax3-x2+x-6,
則導函數(shù):f′(x)=3ax2-2x+1,
∵函數(shù)f(x)=ax3-x2+x-6既有極大值又有極小值,
∴a≠0,且△=4-12a>0,∴$a<\frac{1}{3}$且a≠0.
故答案為:$a<\frac{1}{3}$且a≠0.
點評 本題的考點是函數(shù)在某點取得極值的條件,主要考查學生利用導數(shù)研究函數(shù)極值的能力,關(guān)鍵是將問題轉(zhuǎn)化為導函數(shù)為0的方程有不等的實數(shù)根.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1-$\sqrt{10}$) | B. | $(-1-\sqrt{10},-1+\sqrt{10})$ | C. | $[{-1+\sqrt{10},+∞})$ | D. | $[{-1-\sqrt{10},-1+\sqrt{10}}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ②③④ | B. | ①④ | C. | ①②③ | D. | ②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com