分析 (1)利用正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡可得cosC=-$\frac{1}{2}$,由特殊角的三角函數(shù)值即可得解.
(2)利用三角形面積公式可求ab=4,由余弦定理即可解得a+B的值.
解答 (本題滿分為12分)
解:(1)∵ccosB=(2a+b)cos(π-C).
∴sinCcosB=(-2sinA-sinB)cosC,
∴sin(B+C)=-2sinAcosC,
∴cosC=-$\frac{1}{2}$,
∴C=$\frac{2π}{3}$…(6分)
(2)∵S△ABC=$\frac{1}{2}$absinC=$\sqrt{3}$,
∴ab=4,
∴由余弦定理可得:c2=a2+b2+ab=(a+b)2-ab=16.
∴解得:a+b=2$\sqrt{5}$…(12分)
點評 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,特殊角的三角函數(shù)值,三角形面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p是假命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 | B. | p是假命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 | ||
C. | p是真命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 | D. | p是真命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,3] | C. | [1,3] | D. | [-1,0]∪[1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 3$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com