A. | m≥-1 | B. | m≥$\sqrt{2}$-1 | C. | m≤-$\sqrt{2}$-1 | D. | m≥$\sqrt{2}-1或m≤-\sqrt{2}$-1 |
分析 方法一、由圓的方程找出圓心坐標(biāo)和半徑,依題意得,只要圓上的點(diǎn)都在直線之上,臨界情況就是直線和圓下部分相切,即圓心(0,1)到直線的距離是1,利用點(diǎn)到直線的距離公式得到關(guān)于m的方程,求出方程的解,根據(jù)圖象判斷符合題意的m的值即可得到使不等式恒成立時(shí)m的取值范圍.
方法二、先設(shè)x=cosα,y-1=sinα,再把不等式x+y+m≥0恒成立轉(zhuǎn)化為m≥-(x+y)恒成立,進(jìn)而利用輔助角公式求-(x+y)的最小值即可得到結(jié)論.
解答 解:法一、圓的標(biāo)準(zhǔn)方程x2+(y-1)2=1得,圓心(0,1),半徑r=1
令圓x2+(y-1)2=1與直線x+y+m=0相切,
則圓心到直線的距離d=r,即 $\frac{|1+m|}{\sqrt{1+1}}$=1,化簡(jiǎn)得1+m=±$\sqrt{2}$,
即m=$\sqrt{2}$-1,m=-$\sqrt{2}$-1(舍去),
結(jié)合圖象可知,當(dāng)m≥$\sqrt{2}$-1時(shí),圓上的任一點(diǎn)都能使不等式x+y+m≥0恒成立.
法二、由題設(shè):x=cosα,y-1=sinα,
則 x+y=cosα+sinα+1=$\sqrt{2}$sin(α+$\frac{π}{4}$)+1∈[-$\sqrt{2}$+1,$\sqrt{2}$+1].
∵不等式x+y+m≥0恒成立
∴m≥-(x+y)恒成立;
因?yàn)?(x+y)的最大值為:$\sqrt{2}$-1.
∴m≥$\sqrt{2}$-1.
故選:B.
點(diǎn)評(píng) 本題考查直線與圓的關(guān)系,考查轉(zhuǎn)化思想,學(xué)生掌握不等式恒成立時(shí)所滿足的條件及直線與圓相切時(shí)所滿足的條件,靈活運(yùn)用點(diǎn)到直線的距離公式化簡(jiǎn)取值,靈活運(yùn)用數(shù)形結(jié)合的數(shù)學(xué)思想解決實(shí)際問(wèn)題,是一道綜合題.本題也可以利用三角函數(shù)換元法進(jìn)行求最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,+∞) | B. | (0,1)∪(1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1)∪(1,2) | B. | (-∞,0)∪(0,1)∪(1,2) | C. | (-∞,0)∪(1,2) | D. | (-∞,0)∪(0,1)∪(1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,2) | B. | (1,4) | C. | (-∞,-1)∪[4,+∞) | D. | (-∞,-1]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4+2i | B. | 4-2i | C. | 2+4i | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -5 A | B. | 5A | C. | 5$\sqrt{3}$ A | D. | 10 A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | r∈(0,1] | B. | r∈(1,$\frac{3}{2}$] | C. | r∈($\frac{3}{2}$,2] | D. | r∈(2,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com